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Summary. The use of Dirichlet-to-Neumann operators as transmission conditions is known
to yield optimal Schwarz methods that converge in a finite number of iterations when the
subdomain decomposition has tree-like connectivity. However, it remains an open problem
whether it is possible to construct a finitely terminating algorithm for arbitrary decomposi-
tions. In this article, we construct a Schwarz method that converges in exactly two steps for
any decomposition into subdomains with minimal overlap. In this method, every subdomain
must communicate with all other subdomains, but only data along subdomain boundaries need
to be exchanged.

1 Optimal Interface Conditions

The convergence rate of Schwarz-type domain decomposition methods is very sen-
sitive to the transmission condition used. Thus, it is natural to ask, for a given PDE
and a given decomposition into subdomains, whether there exists a set of optimal in-
terface conditions that leads to convergence in a finite number of steps. For a decom-
position into vertical strips, we know that the Dirichlet-to-Neumann (DtN) operators
yield such an optimal algorithm, see [4, 5, 6]. A similar result for decompositions
whose connectivity graph contains no cycles is shown in [7]. It remains an open
question to show whether similar operators exist for arbitrary decompositions.

The goal of this paper is to show that such an operator exists, at least in the
discrete case, if we allow global communication between the subdomains, i.e., if
each subdomain has access to the interface values of all the other subdomains. More
precisely, we construct a subdomain iteration that converges to the exact solution in
two steps by exchanging only data along subdomain boundaries.

We note that in general, these optimal interface conditions are nonlocal pseudo-
differential operators, which are difficult to use in practice. Thus, the algorithm pre-
sented here is not meant to be implemented in a practical solver. However, practical
algorithms can by derived by approximating the optimal operators by differential op-
erators, see [3, 5] as well as [2] and references therein. Thus, our results serve as a
starting point for this approximation process.
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2 Notation and Assumptions

Let Ω ⊂⊂ Rn be an open set. Suppose we want to solve the elliptic PDE

Lu = f on Ω, u = g on ∂Ω (1)

by discretizing it to obtain the non-singular system Au = f and using a domain
decomposition method. Let Σ be the degrees of freedom therein. Suppose Ω is
subdivided into nonoverlapping subdomains Ω̃j , j = 1, . . . , N , and let Σ̃j be the
discrete degrees of freedom contained within Ω̃j . Let {Ωj}Nj=1 be an overlapping

decomposition with degrees of freedom Σ j , such that Ω̃j ⊂ Ωj (and correspond-
ingly Σ̃j ⊂ Σj), and let Rj andR¬j be operators that restrictΣ ontoΣj andΣ \Σj
respectively. We then define, for each l = 1, . . . , N , the operator R̃l, which has the
same size as Rl, such that

[R̃l]ij =

{
1 if [Rl]ij = 1 and j ∈ Σ̃l,
0 otherwise.

For each j = 1, . . . , N , we define the matrices

Aj = RjAR
T
j , Bj = RjAR

T
¬j , Cj = R¬jAR

T
j , Dj = R¬jAR

T
¬j .

We assume that Dj is nonsingular for all j, so that the Schur complement A j −
BjD

−1
j Cj is well-defined and non-singular. We now state the main assumption that

will be used throughout the paper.

Assumption 1 (Sufficient Overlap) For all j = 1, . . . , N , we have

R̃Tj (RjA−AjRj) = 0. (2)

Assumption 1 states that the overlapping subdomainΣ j needs to be sufficiently large,
so that if v is a degree of freedom in Σ̃j , then its stencil does not extend beyondΣj .
This assumption is easily satisfied if the PDE is discretized using a compact stencil,
because we can always constructΣj (and hence Ωj) based on Σ̃j by extending it to
include all points touched by the stencil.

3 Construction of the Method

The first step in constructing the method is to observe that the exact subdomain
solution uj = Rju can be obtained by solving the Schur complement system

(Aj −BjD−1
j Cj)uj = Rjf −BjD−1

j R¬jf . (3)

If each subdomain has access to the right-hand side of all the other subdomains, then
in principle we would be able to obtain uj in one pass by solving each Schur com-
plement system independently. However, this would not lead to an optimal Schwarz
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method, because Schwarz methods only exchange information on u i along subdo-
main boundaries. Thus, to construct an optimal Schwarz method, we must try to
recoverR¬jf using subdomain solutions only.

To do so, let us examine more closely what happens when we solve ( 3). First, we
rewrite (3) using the definitions of Aj , Bj :

RjA(RTj −RT¬jD−1
j Cj)uj = Rjf −RjAR¬jD

−1
j R¬jf . (4)

If we multiply (4) from the left by R̃Tj , then the sufficient overlap assumption (2)

implies that R̃Tj RjA = R̃Tj AjRj . Thus, we get

R̃Tj AjRj(R
T
j −RT¬jD−1

j Cj)uj = R̃Tj Rjf − R̃Tj AjRjRT¬jD−1
j R¬jf .

SinceRjRTj = I andRjRT¬j = 0 (they restrict toΣj andΣ \Σj respectively, which
are disjoint sets), the above equation simplifies to

R̃Tj Ajuj = R̃Tj Rjf . (5)

This means if uj is the solution of (3), it is always possible to reconstruct R̃jf , the
portion of f located in the nonoverlapping part of the subdomain, using only the
subdomain solution uj . Since f =

∑N
i=1 R̃

T
i Rif andR¬jR̃

T
j = 0, we can substitute

these relations into (3) to obtain the following algorithm.

Algorithm 1 For k = 1, 2, . . . , and for j = 1, . . . , N , solve

(Aj −BjD−1
j Cj)uk+1

j = Rjf −
∑

i
=jTjiu
k
i , (6)

where Tji = BjD
−1
j R¬jR̃

T
i Ai is the transmission operator fromΣi to Σj .

Theorem 1. Let u be the exact solution to the problem Au = f . Then for any initial
guess u0

j , Algorithm 1 converges to the exact solution in at most two iterations, i.e.,
u2
j = Rju.

Proof. Since u1
j is the solution of (3), by (5) we have R̃Tj Aju

1
j = R̃Tj Rjf . So the

second step of Algorithm 1 gives

(Aj −BjD−1
j Cj)u2

j = Rjf −
∑
i
=j

BjD
−1
j R¬jR̃

T
i Aiu

1
i

= Rjf −BjD−1
j R¬j

∑
i
=j

R̃Ti Rif

= Rjf −BjD−1
j R¬j

N∑
i=1

R̃Ti Rif (since R¬jR̃
T
j = 0)

= Rjf −BjD−1
j R¬jf ,

which is exactly the Schur complement formulation of the system with the correct
right hand side. This implies u2

j = Rju, as required.
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We now compare Algorithm 1 with the well-known parallel Schwarz method
with optimal transmission conditions for the tree case:

(Aj − BjD−1
j Cj)uk+1

j = Rjf −
∑

(i,j)∈E(BjR¬jR
T
i +BjD

−1
j CjRjR

T
i )uki ,

where the sum is over allΩi that are neighbors ofΩj . We know that the classical op-
timal algorithm only converges afterD+1 iterations, whereD is the diameter of the
connectivity graph, see [4, 6, 7]. In contrast, Theorem 1 shows that Algorithm 1 will
converge in at most two iterations, regardless of the number of subdomains and the
topology of the decomposition. This comes at a cost: Algorithm 1 requires global
communication among subdomains at every iteration, unlike its classical counter-
part, which only requires communication between neighbors. Finally, we will show
numerically in Sect. 5 that the classical algorithm can fail to converge when the
decomposition is not a tree, while Algorithm 1 converges for decompositions with
arbitrary connectivity.

4 Sparsity Pattern

Formula (6) seems to suggest at every step of Algorithm 1, every subdomain must
have access to the entire solution in every other subdomain. This is in fact not the
case. To understand which values really need to be transmitted, we study the sparsity
pattern of Tji, the operator through which subdomain j obtains information from u i.
We show that this operator contains mostly zero columns, which means the corre-
sponding nodal values are in fact discarded (and thus not needed). We first introduce
the notion of the support of a vector.

Definition 1 (Support of a vector) Let v be a vector with degrees of freedom in Σ.
Then the support of v, denoted by supp(v), is the set of all points in Σ correspond-
ing to nonzero entries in v.

The following equivalences are immediate based on the definitions of supp:

(i) supp(v) ⊂ Σj ⇐⇒ RTj Rjv = v ⇐⇒ R¬jv = 0,

(ii) supp(v) ⊂ Σ̃j ⇐⇒ R̃Tj Rjv = v,
(iii) supp(v) ∩Σj = ∅ ⇐⇒ RT¬jR¬jv = v ⇐⇒ Rjv = 0.

(iv) supp(v) ∩ Σ̃j = ∅ ⇐⇒ R̃jv = 0.

Next, we identify the zero columns of Tji. We do so by multiplying Tji by a
standard basis vector ex and checking whether the product is zero.

Lemma 1. Let x ∈ Σi and ex be its basis vector (1 at x and 0 everywhere else).
Then we have TjiRiex = 0 in each of the following cases:

(i) supp(Aex) ∩ Σ̃i = ∅;
(ii) supp(Aex) ⊂ Σj;

(iii) {x} ∪ supp(Aex) ⊂ Σ̃i \Σj .
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Proof. First, we rewrite TjiRiex as

TjiRiex = BjD
−1
j R¬jR̃

T
i AiRiex = BjD

−1
j R¬jR̃

T
i RiAex

by the sufficient overlap condition. We then consider the three cases:

(i) supp(Aex) ∩ Σ̃i = ∅: we have

TjiRiex = BjD
−1
j R¬j(R̃Ti RiAex) = BjD

−1
j R¬j(RTi R̃iAex︸ ︷︷ ︸

=0

) = 0.

(ii) supp(Aex) ⊂ Σj :

We have supp(R̃iRTi Aex) ⊂ supp(Aex) ⊂ Σj , so R¬jR̃iR
T
i Aex = 0.

(iii) {x} ∪ supp(Aex) ⊂ Σ̃i \Σj :
Since supp(Aex) ⊂ Σ̃i, we have R̃iRTi Aex = Aex. Now consider the linear

system Djy = R¬jAex, which can be rewritten as R¬jAR
T
¬jy = R¬jAex.

Since x /∈ Σj , we see that y = R¬jex satisfies the equation (because
RT¬jR¬jex = ex). This is also the unique solution because Dj is nonsingu-

lar. Thus, we have D−1
j R¬jR̃

T
i RiAex = D−1

j R¬jAex = R¬jex. Now we
multiply from the left by Bj to obtain

TjiRiex = RjAR
T
¬j︸ ︷︷ ︸

Bj

R¬jex = RjAex = 0,

since supp(Aex) lies completely outsideΣj .

Ωi

Ωj

Ω̃i

(i)

(ii)

(iii)

Fig. 1. A sketch showing stencils associated with different points in Ωi. Stencils with solid
nodes indicate points x at which TjiRiex �= 0; those with hollow nodes indicate points at
which TjiRiex = 0 for the three cases indicated in Lemma 1.

Each of the three cases in Lemma 1 is illustrated in Fig. 1, where the hollow
stencils indicate points that get mapped to zero by T ji. Case (i) (top right-hand cor-
ner) happens when the stencil falls completely outside Ω̃i; case (ii) (bottom-left of
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Ωi) occurs when the stencil falls entirely within Ωj . Finally, case (iii) occurs when
the stencil is completely inside Ω̃i \ Ωj , just like the stencil near the center of the
graphic. Thus, we see from Fig. 1 that the only points with TjiRiex �= 0 are those
indicated by solid nodes, i.e. those that are so close to the boundary of Ω̃i \ Ωj that
their stencils straddle the boundary. These, in fact, are the only nodal values that must
be transmitted. For a five-point stencil, this corresponds to a layer with a thickness of
two nodes (one on each side of the boundary, see Fig. 2 in the next section); for wider
stencils, e.g., for higher-order equations, this layer becomes thicker, but the number
of values transmitted is still proportional to the length of ∂(Ω̃i \ Ωj), which is one
dimension lower than the set of all nodes in Ω̃i. If we define Pji to be the restriction
operator fromΣi to the set of boundary nodes along ∂(Ω̃i \Ωj), then we can rewrite
Algorithm 1 as follows:

Algorithm 2 For k = 1, 2, . . ., and for j = 1, . . . , N , solve

(Aj −BjD−1
j Cj)uk+1

j = Rjf −
∑

i
=j T̃jiũ
k
i ,

where T̃ji = BjD
−1
j R¬jR̃

T
i AiP

T
ji and ũki = Pjiuki .

Remark Algorithms 1 and 2 have identical iterates if the same initial guesses are
used. Their only difference is that the latter does not transmit data corresponding
to zero columns in Tji, i.e., data that would be discarded anyway. This reduces the
communication costs by a factor of H/h, where h is the fine mesh parameter and H
is the size of the subdomain.

5 Numerical Examples

In this section, we present two examples in which we compare the convergence be-
havior of Algorithm 2 with that of the classical parallel Schwarz method with optimal
transmission conditions, which is known to converge in a finite number of iterations
in the tree case. For simplicity, in both cases we solve the 2D Poisson equation with
Dirichlet boundary conditions, using the standard 5-point discretization. However,
since the methods are derived purely algebraically, they are in principle applicable to
any discretized PDE, provided we can define the subdomains so that they satisfy the
sufficient overlap assumption, and that the subdomain problems are well posed.

Example 1 Here we decompose a rectangular domain into 6 vertical strips, as shown
in Fig. 2a. Since the diameter of the connectivity graph is D = 5, we know that the
parallel Schwarz method with optimal transmission conditions will converge in at
most 6 steps; this is verified by the numerical results shown in Table 1. In contrast,
Algorithm 2 converges in exactly two steps; this is in agreement with Theorem 1.
Finally, Fig. 2a shows the communication pattern for both algorithms. As predicted
by Lemma 1, the only nodal values that need to be transmitted are located on either
side of the subdomain boundaries. Also, whereas the classical algorithm only takes
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information from its neighbors, Algorithm 2 communicates with every subdomain,
which makes it possible to converge in two iterations.

Example 2 In this example, we use the 4× 4 decomposition shown in Fig. 2b. Since
the connectivity graph is no longer a tree, we can no longer expect optimal parallel
Schwarz to converge after a finite number of steps. Indeed, we see from Table 1 that
the iteration diverges. This happens because of two reasons. First, since there are
points belonging to more than two subdomains (i.e., cross points), optimal parallel
Schwarz actually applies redundant updates at these points, leading to divergence,
see [1]. In addition, unlike the tree case, ∂Ωj is divided among several subdomains,
so the boundary values obtained byΩj are no longer the trace of a harmonic function;
instead, they are the trace of a function that fails to be harmonic at the partition points.
Despite these difficulties, Algorithm 2 still converges in two iterations; the operators
T̃ji are able to extract the right interface information and combine them the right way
for the method to converge.

1 2 3 4 5 6

Ωj

1 2 3 4 5 6

Ωj

(a)

1

2

3

4

1 2 3 4

Ωj

(b)

Fig. 2. Communication pattern for two decompositions into subdomains. Black squares indi-
cate nodal values required by Ωj , which is enclosed by thick solid lines. (a) decomposition
into vertical strips. The top figure shows the values required by Algorithm 2, and the bottom
those required by classical Parallel Schwarz with optimal transmission conditions. (b) a 4× 4
decomposition, shown with the communication pattern for Algorithm 2.

6 Conclusion

We presented a new Schwarz method that converges in exactly two iterations when
the domain decomposition satisfies the sufficient overlap assumption. Unlike the
classical algorithm, the optimal transmission conditions we derived can handle ar-
bitrary subdomain topologies. In our algorithm, each subdomain must communicate
with all the other subdomains at each step; however, one only needs to exchange
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Table 1. Parallel Schwarz with optimal transmission conditions versus Algorithm 2. In each
case, we report the maximum L∞ errors over all subdomains.

Example 1 (6× 1) Example 2 (4× 4)
Its. Parallel Schwarz Algorithm 2 Parallel Schwarz Algorithm 2

1 3.605 × 100 3.681 × 100 6.987 × 101 6.965 × 101

2 2.176 × 10−1 1.066 × 10−14 1.191 × 102 8.527 × 10−13

3 1.252 × 10−2 5.438 × 101

4 7.328 × 10−4 4.652 × 102

5 3.278 × 10−5 1.118 × 103

6 1.066 × 10−14 3.894 × 103

data along a coarse grid structure containing the subdomain boundaries. Since its
derivation is based only on sparse matrices, the method is in principle applicable to
any PDE, or even systems of PDEs, as long as the subdomain problems remain solv-
able. Ongoing work focuses on deriving approximate local operators to obtain more
efficient implementations.
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