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1 Introduction

When a problem is posed on an unbounded domain, the domain needs to be truncated
in order to perform computations, and the pole condition is a new technique devel-
oped over the last few years for this purpose. The subject of domain truncation is
already an established research field. It was started in 1977 in a seminal paper by En-
quist and Majda [6], where a systematic method to obtain absorbing boundary condi-
tions (ABCs) is introduced for wave propagation phenomena. Absorbing boundary
conditions are approximations of transparent boundary conditions (TBCs), which,
when used to truncate the unbounded domain, lead by definition precisely to the re-
striction of the original solution on the unbounded domain. Unfortunately transparent
boundary conditions often involve expensive non-local operators and are thus incon-
venient. Absorbing boundary conditions became immediately a field of interest of
mathematicians in approximation theory, see for example [ 3, 9]. Recent reviews on
non-reflecting or absorbing boundary conditions concerning the wave equation are
[8] by Hagstrom and more recently Givoli [7]. Non-reflecting boundary conditions
for the transient Schrödinger equation are reviewed by Antoine et al. [ 1].

For the description of resonances for Schrödinger operators, the exterior complex
scaling (ECS) method was introduced by Simon [14] in 1979. In the early nineties,
a technique called perfectly matched layers (PMLs) was developed by Bérenger [ 4].
Here the idea is to add a layer just outside where the domain is truncated. In this
layer, a modified equation is solved, which can be interpreted as an area with different
artificial material, which absorbs outgoing waves, without creating reflections. The
PML can be interpreted as a complex coordinate stretching in the layer, by which
the original equation is transformed into a new one with appropriate properties, see
[5, 15]. Hence it is equivalent to ECS.

Absorbing boundary conditions and perfectly matched layers are two compet-
ing techniques with the same purpose, namely to truncate an unbounded domain for
computational purposes. In 2003, a new technique for the derivation and approxi-
mation of transparent boundary conditions was proposed by Schmidt, Hohage and
Zschiedrich [11], based on the so called pole condition:
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“The pole condition is a general concept for the theoretical analysis and the
numerical solution of a variety of wave propagation problems. It says that
the Laplace transform of the physical solution in the radial direction has no
poles in the lower complex half-plane.”

The pole condition leads to a numerical method for domain truncation which is easy
to implement and has shown great promise in numerical experiments for a variety of
problems, see [10, 12, 13]. We show in this paper for a model problem of diffusive
nature an error estimate for the numerical method based on the pole condition: the
domain truncation achieved is a Padé approximation of the transparent boundary
condition.

2 Model Problem

We consider on the domainΩg := R× (0, π) the elliptic model problem

(η −Δ)u = f in Ωg ,
u(x, 0) = u(x, π) = 0, (1)

where η > 0, and we seek bounded solutions. For an illustration, see Fig. 1. In order
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Fig. 1. Domain and support of f .

to perform computations on this problem, we truncate the domain in the unbounded
x-direction. We assume that f is compactly supported inΩ := (0, 1)× (0, π), which
suggests to truncate the domain along Γj = j × (0, π), j = 0, 1, see Fig. 1, using an
artificial boundary conditions of the form

B0(u)(0) = 0, B1(u)(1) = 0. (2)

Expanding the solution u in eigenmodes in the y direction, which in our case is a
sine-expansion for constant η and the homogeneous Dirichlet conditions at the top
and bottom, yields

(η − ∂xx + k2)û = f̂ ,
β0û(0) = 0, β1û(1) = 0,

(3)
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where βj , j = 0, 1 are the symbols of the artificial boundary conditions, and f̂ =
F(f) denotes the sine transform of f . A direct calculation shows that if β j = ∂n +√
η + k2, the truncated solution and the global solution restricted toΩ coincide, and

therefore the exact or transparent boundary conditions (TBCs) are

∂nû(0, k) +
√
η + k2û(0, k) = 0, ∂nû(1, k) +

√
η + k2û(1, k) = 0, (4)

and we see the well known Dirichlet to Neumann operator F −1(
√
η + k2) appear.

In order to obtain an absorbing boundary condition, one could therefore approximate
the square root either by a polynomial or a rational function.

3 The Pole Condition

In order to explain the pole condition, we follow the quote above and perform now
a Laplace transform in the radial direction, which in our case is the x direction, with
dual variable s̃, and obtain on the right boundary

(η + k2 − s̃2)U(s̃, k) + ∂nû(1, k) + s̃û(1, k) = 0, (5)

and a similar result on the left of the interface Γ0. Solving for U , we obtain

U(s̃, k) = − ∂nû+ s̃û

η + k2 − s̃2 , (6)

and thus U(s̃, k) has two singularities (poles), at s̃ = ±
√
η + k2. When looking

outward from the computational domain, we are interested in bounded solutions,
and hence the singularities in the right half plane R(s̃) > 0 are undesirable, as they
correspond to exponentially increasing solutions. Using a partial fraction decompo-
sition, we find

U(s̃, k) =
û(1, k)− ∂nû(1,k)√

η+k2

2(s̃+
√
η + k2)

+
û(1, k) + ∂nû(1,k)√

η+k2

2(s̃−
√
η + k2)

, (7)

and we see again that if û satisfies the TBC (4), the undesirable pole represented by
the second term of (7) is not present, since the numerator vanishes identically. The
key idea of the pole condition is to enforce that the second term can not be present,
by imposing analyticity of U(s̃, k) in the right half of the complex plane R(s̃) > 0.
In order to do so, it is convenient to first use the Möbius transform M s0 for s0 ∈ C

with positive real part, see Fig. 2, and map the right half plane into the unit circle,

Ms0 : s̃ �→ s =
s̃− s0
s̃+ s0

, M−1
s0 : s �→ s̃ = −s0

s+ 1
s− 1

.

We now exclude singularities of the solution U(s̃, k) in the right half of the complex
plane by enforcing the representation of U in the new variable s by the power-series
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Fig. 2. Möbius transform.

U(s, k) =
s− 1
2s0

(
(s− 1)

∞∑
n=0

ans
n − û

)
. (8)

We chose this particular ansatz, because it satisfies automatically the condition from
Laplace transform theory that if û exists, we must have

lim
s̃→∞

s̃U(s̃, k) = lim
s→1

−s0
s+ 1
s− 1

U(s, k) = û(1, k).

To simplify the notation, we set η̃ := η + k2 in what follows. Inserting the power-
series expansion (8) into Eq. (5), and collecting terms, we obtain(

η̃(s− 1)2

2s0
− s0(s+ 1)2

2

) ∞∑
n=0

ans
n =

(
η̃(s− 1)

2s0
− s0

s+ 1
2

− ∂ν
)
û(1, k).

(9)
Matching powers of s, we obtain the equations for the power series coefficients a n,(

η̃ − s20
)
a0 +

(
s20 + η̃

)
û(1, k) = −2s0∂ν û(1, k), (10)(

η̃ − s20
)
a1 − 2

(
η̃ + s20

)
a0 −

(
η̃ − s20

)
û(1, k) = 0, (11)(

η̃ − s20
)
an+1 − 2

(
η̃ + s20

)
an +

(
η̃ − s20

)
an−1 = 0, n = 1, . . . L− 2, (12)

−2
(
η̃ + s20

)
aL−1 +

(
η̃ − s20

)
aL−2 = 0, (13)

where we truncated the power series expansion at the L-th term. We observe that the
expansion coefficients satisfy a three term recurrence relation similar to the relation
satisfied by the original solution in the x direction, when a five point finite difference
stencil is used for the discretization, and since the expansion coefficients depend on
k, and η̃ = η + k2, the recurrence relation shows that the expansion coefficients
also satisfy a second order differential equation in the y direction. This permits an
easy implementation of the expansion coefficients on the same grid as the solution,
as illustrated in Fig. 3, and is the reason why it is so easy to use the pole condition
truncation. Note that this is the same system of equations for the an as obtained using
a Galerkin ansatz in the Hardyspace of the unit disc by Hohage and Nannen [ 10].
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Fig. 3. Implementation of the expansion coefficients on the same grid as the interior unknowns.

4 Error Estimate

In order to gain insight into the approximation we obtain from the truncation at the
L-th term, we define

b :=
η̃ + s20
η̃ − s20

=
η + k2 + s20
η + k2 − s20

, (14)

and we start resolving the recurrence relation from the last term ( 13), which implies

aL−1 =
1
2b
aL−2.

Using this result and (12) for n = L− 2 then gives

aL−2 =
1

2b− 1
2b

aL−3 =
1

2b−
1
2b
aL−3,

and continuing like this, we arrive when using (12) for n = 1 at

a1 = a0
1

2b− 1
2b−... 1

2b

= a0
1

2b−
1

2b−
1

2b− . . .
1
2b

=
L−1∑
n=1

1
2b− ,

a truncated continued fraction expansion. Using now ( 11) and (10), and rearranging
terms, we obtain the representation of the approximate operator which is defined by
the pole condition, namely

∂ν û(1, k) +
η + k2 − s20

2s0

(
b−

L∑
n=1

1
2b−

)
û(1, k) = 0. (15)

Comparing this relation with the TBC from (4), we see that the term containing the
continued fraction expansion must represent an approximation of the DtN operator√
η + k2.

Theorem 1. If the truncation level L of the continued fraction expansion ( 15) is go-
ing to infinity, it represents the exact Dirichlet to Neumann operator,
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η + k2 − s20
2s0

(
b−

∞∑
n=1

1
2b−

)
û(1, k) =

√
η + k2û(1, k) = −∂ν û(1, k), (16)

independently of the expansion point s0, and therefore the truncation condition ob-
tained from the pole condition converges to the TBC.

Proof. The continued fraction in (16) maybe rewritten as

b−
∞∑
n=1

1
2b− = b− 1

2b− 1
x

with x = 2b− 1
x
. (17)

The roots of x2 − 2bx + 1 are x1,2 = ±
√
b2 − 1 + b. Inserting x =

√
b2 − 1 + b

into (17), and using the identity

b− 1
b+

√
b2 − 1

=
√
b2 − 1,

we find from (15) and using the definition for b in (14) that

η + k2 − s20
2s0

((
η + k2 + s20
η + k2 − s20

)2

− 1

) 1
2

û = −∂ν û,

which can be simplified to give the result. �

We are now interested in obtaining an error estimate if the power series is truncated
at the L-th term. To this end, we use the following well known result for truncated
continued fraction expansions.

Theorem 2 (Sect. 4 [2]). The L-th truncated continued fraction expansion can be
represented by

a0 +
L∑
n=1

bn
an+

=
AL
BL

,

where An and Bn are defined by the recurrence relations

A−1 = 1, A0 = a0, An+1 = an+1An + bn+1An−1,

B−1 = 0, B0 = 1, Bn+1 = an+1Bn + bn+1Bn−1.
(18)

In what follows we will call (an)n the denominator sequence and (bn)n the numer-
ator sequence.

Theorem 3. The truncated recurrence relation (10), (11), (12) and (13) from the
pole condition represents an (L+1,L)-Padé approximation of the symbol of the DtN

operator s0
√

1 + z about z = 0, where z = η+k2−s20
s20

.
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Proof. The Padé approximation of (1 + z)
1
2 expanded at z = 0 is given by the

continued fraction

(1 + z)
1
2 = 1 +

1
2z

1+

1
2z

2+

1
2z

1+

1
2z

2+
. . . .

Hence the denominator sequence is a0 = 1 and an = 3+(−1)n

2 , n ≥ 1, whereas the
numerator sequence is given by bn = 1

2z, see [2], equation (6.4) on page 139. Using
Theorem 2, the L-th approximation is given by the fraction ofAL andBL. Using the
recurrence relations (18) with leading terms 2n+ 1, 2n, and 2n− 1, the even terms
can be eliminated to give

A−1 = 1, A1 = z+2
2 , A2n+1 = (2 + z)A2n−1 − z2

4 A2n−3,

B−1 = 0, B1 = 1, B2n+1 = (2 + z)B2n−1 − z2

4 B2n−3.
(19)

Using the variable z = η+k2−s20
s20

in the continued fraction representation for the
square root stemming from the pole condition (15), we find that the denominator
sequence is

c0 =
η + k2 + s20

2s0
= s0

z + 2
2

, cn = 2
η + k2 + s20
η + k2 − s20

=
2(2 + z)

z
, for n ≥ 1,

and the numerator sequence is

d1 = −η + k2 − s20
2s0

= −s0
z

2
, dn = −1, for n ≥ 2.

Using again Theorem 2, the L-th approximation is given by the fraction of CL and
DL, which are given by

C−1 = 1, C0 = s0
z+2
2 , C1 = s0( z2 + 4 + 4

z ), Cn+1 = 2(2+z)
z Cn − Cn−1,

D−1 = 0, D0 = 1, D1 = 2
z (2 + z), Dn+1 = 2(2+z)

z Dn −Dn−1.

If we define C̃n := (z/2)nCn, D̃n := (z/2)nDn, we obtain for n ≥ 0

C̃0 = s0
z+2
2 , C̃1 = s0

z
2 ( z2 + 4 + 4

z ), C̃n+1 = (2 + z)C̃n − z2

4 C̃n−1,

D̃0 = 1, D̃1 = 2 + z, D̃n+1 = (2 + z)D̃n − z2

4 D̃n−1,
(20)

which is the same recurrence as (19). Since C̃0 = s0A1, C̃1 = s0A3, D̃0 = B1 and
D̃1 = B3, the proof is complete. �
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