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1 Introduction

Schwarz waveform relaxation methods are naturally parallel methods to solve evo-
lution problems. They are based on a decomposition of the physical domain into
overlapping subdomains, and a decomposition of the time domain into time win-
dows. On each time window, one then solves the original time dependent problem,
and a subdomain iteration like in the classical Schwarz method, but now in space-
time, is used in order to obtain a converged solution on the present time window.
Only after convergence on the time window is the next time window treated by the
algorithm. This type of algorithm was first proposed in [2], and analyzed in [8] and
independently in [10]. Optimized Schwarz waveform relaxation methods were in-
troduced in [7] to obtain more effective space-time iterative methods, compared to
the classical variants, and the associated optimization problem was studied in [ 6] for
the case of Robin conditions, and in [1] for higher order transmission conditions,
see also [12]. Our extensive numerical experiments (a summary is given in Table 1),
reveal that, while the theoretical parameters are asymptotically optimal, the perfor-
mance can be substantially improved using a more accurate estimate for the constant.
We show in this paper that this difference can be put on a theoretical foundation by
taking into account geometric parameters from the decomposition. We illustrate the
improved performance with the new parameters by numerical experiments, and also
study numerically the dependence of the parameter on the number of subdomains.

2 Optimized Schwarz Waveform Relaxation

We study the optimized Schwarz waveform relaxation algorithm for the advection
reaction diffusion equation in Ω ⊂ R2,

Lu := ut + a · ∇u− νΔu + bu = f, in Ω × (0, T ), (1)
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where ν > 0, b ≥ 0 and a = (a, c)T . In order to describe the Schwarz waveform
relaxation algorithm, we decompose the domain into two, possibly overlapping sub-
domains Ω1 and Ω2, with interfaces Γ1 = ∂Ω1 ∩ Ω2 and Γ2 = ∂Ω1 ∩ Ω2. The
algorithm for this two subdomain decomposition calculates then for n = 1, 2, . . . the
iterates (un1 , un2 ) defined by

Lun1 = f in Ω1 × (0, T ), Lun2 = f in Ω2 × (0, T ),
un1 (·, ·, 0) = u0 in Ω1, un2 (·, ·, 0) = u0 in Ω2,

B1u
n
1 = B1u

n−1
2 on Γ1 × (0, T ), B2u

n
2 = B2u

n−1
1 on Γ2 × (0, T ),

(2)

where B1 and B2 are linear operators in space and time, possibly pseudo-differential,
and an initial guess B2u

0
1(0, ·, ·) and B1u

0
2(L, ·, ·), t ∈ (0, T ), needs to be provided.

3 Theoretical Results

There are many different choices for the operators B j . The identity leads to the clas-
sical Schwarz waveform relaxation method, and zeroth or higher order conditions
lead to optimized variants, see for example [1, 6]. We study here in detail the case
where the transmission operators are

B1 := ∂x −
a− p
2ν

B2 := ∂x −
a+ p

2ν
. (3)

Using Fourier analysis, and a decomposition of the domain Ω = R 2 into two half
spaces Ω1 = (−∞, L) × R and Ω2 = (0,∞) × R, see for example [6], one can
obtain the convergence factor of algorithm (2),

ρ(ω, k, p) =
z − p
z + p

e−
Lz
2ν , (4)

where z :=
√
x2

0 + 4ν2k2 + 4iν(ω + ck) (standard branch of the square root with
positive real part), x2

0 := a2 + 4νb, and k and ω are the Fourier variables in space
and time. Computing on a grid, we assume that kmax = π

h where h is the local mesh
size in x and y, and ωmax = π

Δt , and that we also have estimates for the lowest
frequencies kmin and ωmin from the geometry, see for example [4], or for a more
precise analysis see [5].

Defining D := {(ω, k), ωmin ≤ |ω| ≤ ωmax, kmin ≤ |k| ≤ kmax}, the param-
eter p∗ which gives the best convergence rate is solution of the best approximation
problem

inf
p∈C

sup
(ω,k)∈D

|ρ(ω, k, p)| = sup
(ω,k)∈D

|ρ(ω, k, p∗)| =: δ∗. (5)

In what follows, we will use

k̄ :=
|c|(

√
(|c|2 + x2

0)2 + 16ν2ω2
min − |c|2 − x2

0)
8ν2ωmin

.
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By a direct calculation, we see that 0 ≤ k̄|c| ≤ ωmin, and we define the function

ϕ(k, ξ) := 2
√

2
√√

(x2
0 + 4ν2k2)2 + 16ν2ξ2 + x2

0 + 4ν2k2, (6)

and the constant

A =

⎧⎨⎩
ϕ(k̄,−ωmin + |c|k̄) if kmin ≤ k̄,
ϕ(kmin,−ωmin + |c|kmin) if k̄ ≤ kmin ≤ 1

|c|ωmin,
ϕ(kmin, 0) if kmin ≥ 1

|c|ωmin.
(7)

We assume that the mesh sizes in time and space are related either byΔt = Chh, or
Δt = Chh

2. The following theorem gives the asymptotic value of the best parameter
p∗ in the case of no overlap, L = 0, for the general case where the geometric param-
eters kmin and ωmin are non zero. This is an important generalization of the result
from [11], where kmin = ωmin = 0. The proof of this result is beyond the scope of
this short paper, and will appear elsewhere.

Theorem 1. For h small, the best approximation problem (5) has a unique solution
p∗, which is given asymptotically by

p∗ ∼
√

A

Bh
, δ∗ = 1−

√
ABh+O(h),

where A is defined in (7), and

B =

⎧⎪⎨⎪⎩
2
νπ if Δt = Chh,

C
√

2d
νπ if Δt = Chh

2, d := νπCh, C =

{
1 if d < d0,√

d+
√

1+d2

1+d2 if d ≥ d0,

where d0 ≈ 1.543679 is the unique real root of the polynomial d3 − 2d2 + 2d− 2.

We take a closer look at two special cases:

(i) If kmin = ωmin = 0, all three cases for A in (7) coincide, since k̄ = 0, and the
constant A simplifies to

A = 4x0, (8)

and we find the special case analyzed in [11].
(ii) For the heat equation, a = 0, b = 0, c = 0, ν = 1, and if kmin and ωmin do not

both vanish simultaneously, we also obtain k̄ = 0, and

A = 4

√
2
(√

k4
min + ω2

min + k2
min

)
,

the special case analyzed in [14].
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Fig. 1. Convergence behavior with the theoretically optimized parameter p∗ in the top four
pictures, and the numerically optimized one below: for T = 1

20
on the left and T = 1 on the

right using Schwarz as an iterative method in the first and third row, and as preconditioner for
GMRES in the second and fourth row.
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4 Numerical Experiments

We discretize (1) with a := (1, 1), ν = 0.1 and c = 0 on Ω = (0, 1.2) × (0, 1.2)
using P1 finite elements on a regular triangular mesh with h = 1

100 , and backward
Euler with Δt = 1

400 . We simulate directly the homogeneous error equations, start
the iteration with a random initial guess, and stop when the residual becomes smaller
than 10−6. We do not use a coarse grid.

Table 1. Number of iterations for T = 1 using the old (p∗ = 3.77) and new (p∗ = 8.42)
theoretically optimized parameters compared to the best choice (given in parentheses after the
iteration number) obtained by numerical minimization of the iteration number.

Iterative GMRES
Decomposition Old New Numerical Old New Numerical

2× 1 271 131 70 (16.55) 49 38 35 (13.42)
2× 2 272 132 81 (14.05) 49 40 38 (13.42)
4× 1 270 130 73 (15.30) 49 39 36 (12.80)
8× 1 271 131 83 (13.58) 51 45 44 (10.92)
4× 4 272 131 91 (12.48) 50 44 44 ( 8.42)
8× 8 274 132 109 (10.30) 58 59 56 ( 5.77)

Table 1 shows iteration numbers for the new optimized parameter p ∗ from The-
orem 1, compared to the old one from [11] given in (8), and the parameters which
work numerically best (found using a multi directional simplex method, see [ 13]).
We provide iteration numbers both for the algorithm used as an iterative solver, and
as a preconditioner for GMRES.

The left column gives the type of decomposition: 8× 1 means for example a one
dimensional, banded decomposition into 8 subdomains. Clearly the new estimate
of p∗ leads to a significantly better method, and the iteration number is now much
closer to the best possible in the algorithm. We also see that the numerically best
parameter depends on the number of subdomains, a fact which our analysis based on
two subdomains cannot capture. The iteration number then grows with the number
of subdomains for larger time windows without coarse grid, as in the case of the
classical Schwarz waveform relaxation algorithm, see [9].

Next, we present a large scale study in Table 2, where Ω is decomposed into
bands, 2× 1, 3× 1, 4× 1 . . ., for various length of the time interval.

We observe how the convergence is independent of the number of subdomains
for the theoretically optimized parameter, a result that has been proved for classical
Schwarz waveform relaxation methods over short time intervals in [ 9], see also [3],
but no analytical results exist so far for optimized Schwarz methods. We also see
again that the new optimized parameter performs as well as the numerically opti-
mized one when GMRES is used. We show in Fig. 1 the convergence curves of the
Schwarz waveform relaxation algorithm used as an iterative solver and as a precon-
ditioner for GMRES, both for the theoretically and numerically optimized parameter.
We see that the algorithm’s convergence behavior does not depend on the number of
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Table 2. Number of iterations for different final times T and different numbers of
subdomains, both using the theoretical and numerically optimal p∗, which was p∗ ∈
{8.4, 8.4, 9.3, 10.7, 12.6} for T ∈ {1, 1

2
, 1

5
, 1

10
, 1

20
}, and the value of the numerically op-

timal p∗.

Iterative solver Preconditioner for GMRES
Iteration number using the theoretical p∗

T 2×1 3×1 4×1 5×1 6×1 8×1 10×1 12×1 2×1 3×1 4×1 5×1 6×1 8×1 10×1 12×1
1 131 129 130 130 130 131 131 131 38 38 39 40 41 45 49 55

1/2 131 129 129 130 130 130 130 131 36 36 36 37 37 38 40 43
1/5 119 117 118 118 119 119 119 119 33 33 33 33 33 33 33 34
1/10 103 102 103 103 103 103 103 104 29 29 29 30 30 30 30 30
1/20 88 86 87 87 87 87 87 87 26 26 26 26 26 26 26 26

Iteration number using the numerical p∗

T 2×1 3×1 4×1 5×1 6×1 8×1 10×1 12×1 2×1 3×1 4×1 5×1 6×1 8×1 10×1 12×1
1 70 72 73 76 78 83 89 93 35 35 36 38 40 44 49 53

1/2 63 63 63 64 66 68 72 75 33 32 33 33 34 36 39 42
1/5 52 52 52 52 53 54 55 56 28 28 28 28 28 29 30 31
1/10 45 45 45 45 45 46 46 47 25 25 25 25 25 25 25 26
1/20 40 39 39 39 39 39 40 40 22 21 21 22 22 22 22 22

Value of the numerical p∗

T 2×1 3×1 4×1 5×1 6×1 8×1 10×1 12×1 2×1 3×1 4×1 5×1 6×1 8×1 10×1 12×1
1 16.4 15.4 15.4 14.9 14.4 13.7 12.9 12.0 13.4 13.4 12.8 12.2 9.7 10.9 8.4 5.9

1/2 18.4 17.9 17.9 17.7 17.4 16.7 15.9 15.4 18.4 17.8 18.4 17.2 17.2 14.1 13.4 10.9
1/5 22.3 22.3 22.3 22.3 22.3 22.3 21.3 20.3 21.8 21.8 21.8 21.8 21.8 19.3 19.3 21.8
1/10 25.7 25.7 25.7 25.7 25.7 25.7 25.7 24.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 20.7
1/20 29.6 29.6 29.6 29.6 29.6 29.6 29.6 32.6 32.6 30.1 30.1 32.6 32.6 32.6 32.6 32.6

subdomains over the short time interval. We also observe that the numerically op-
timized parameter leads to a superlinear convergence regime, while the theoretical
one gives a linear convergence regime.

iterations

lo
g
o
f
re

s
id
u
a
l

Fig. 2. Challenging geometrical decomposition on the left, and convergence curve on the right.

We next turn to the case of decompositions with cross points, where the square
domainΩ is decomposed into smaller square or rectangular subdomains, 2×2, 3×2,
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Table 3. Number of iterations for the theoretical optimized parameter, and in parentheses for
the numerically optimized one for different final times T and different decompositions with
cross points.

T Iterative solver Preconditioner for GMRES

1
20

× 2 3 4 5 6
2 88(45)
3 87(45) 88(45)
4 88(45) 87(45) 87(46)
5 88(45) 88(46) 88(46) 88(46)
6 88(45) 87(46) 88(46) 88(46) 88(46)

× 2 3 4 5 6
2 28(25)
3 28(25) 28(25)
4 28(25) 29(26) 29(25)
5 28(25) 29(26) 29(26) 29(25)
6 28(25) 29(26) 29(26) 29(25) 29(25)

1
5

2 120(60)
3 119(60) 119(61)
4 119(61) 119(61) 120(61)
5 119(61) 119(61) 120(62) 120(62)
6 119(62) 119(62) 119(62) 120(63) 120(64)

2 35(32)
3 35(32) 35(32)
4 35(32) 35(32) 35(32)
5 35(32) 35(32) 35(32) 35(32)
6 35(33) 35(33) 35(32) 35(33) 35(33)

1

2 132(81)
3 131(84) 131(86)
4 131(86) 131(89) 131(91)
5 131(88) 131(91) 131(93) 131(96)
6 131(91) 131(93) 131(96) 131(98) 131(100)

2 40(38)
3 41(40) 42(41)
4 42(41) 43(43) 44(44)
5 43(43) 44(44) 46(45) 48(47)
6 45(45) 46(45) 48(47) 50(49) 52(51)

3 × 3, . . .. The results are given in Table 3. The algorithm performs similarly to
the banded case, but an interesting new observation is that the number of iterations
over the long time interval is constant over anti-diagonals in the table (notice the
numerically optimized case in particular), which shows that the diameter of the graph
of the decomposition is relevant for the dependence on the number of subdomains
over long times.

We finally show a numerical experiment for T = 1 on the geometrically chal-
lenging decomposition shown in Fig. 2 on the left, which our generic simulator, im-
plemented in Python using MPI, can easily handle. The computational mesh is twice
refined from the mesh shown, and the convergence history with GMRES is shown in
Fig. 2 on the right.

5 Conclusions

We presented new theoretical estimates for the parameters in the optimized Schwarz
waveform relaxation algorithm. Our large scale numerical study shows that the new
parameters perform significantly better than the old ones, and they reveal properties
of the algorithm which are not yet understood theoretically, like the good scaling
properties when the number of subdomains is increased, or the dependence of the
parameter on the number of subdomains.

Acknowledgments This work was partially supported by the Swiss SNF grant
200020-121561/1, and by the French ANR projects COMMA and SHP-CO2.



268 M.J. Gander et al.

References

1. D. Bennequin, M.J. Gander, and L. Halpern. A homographic best approximation problem
with application to optimized Schwarz waveform relaxation. Math. Comput., 78(265):
185–232, 2009.

2. M. Bjørhus. On Domain Decomposition, Subdomain Iteration and Waveform Relaxation.
PhD thesis, University of Trondheim, Norway, 1995.

3. D.S. Daoud and M.J. Gander. Overlapping Schwarz waveform relaxation for advection
reaction diffusion problems. Bol. Soc. Esp. Mat. Apl., 46:75–90, 2009.

4. M.J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal., 44(2):699–731, 2006.
5. M.J. Gander. On the influence of geometry on schwarz methods. These Proceedings.

Springer Berlin, Heidelberg, New York, 2010.
6. M.J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for ad-

vection reaction diffusion problems. SIAM J. Numer. Anal., 45(2):666–697, 2007.
7. M.J. Gander, L. Halpern, and F. Nataf. Optimal convergence for overlapping and non-

overlapping Schwarz waveform relaxation. In C.-H. Lai, P. Bjørstad, M. Cross, and
O. Widlund, editors, Eleventh International Conference of Domain Decomposition Meth-
ods. ddm.org, 1999.

8. M.J. Gander and A.M. Stuart. Space time continuous analysis of waveform relaxation for
the heat equation. SIAM J. Sci. Comput., 19:2014–2031, 1998.

9. M.J. Gander and H. Zhao. Overlapping Schwarz waveform relaxation for the heat equa-
tion in n-dimensions. BIT, 42(4):779–795, 2002.

10. E. Giladi and H.B. Keller. Space time domain decomposition for parabolic problems.
Numer. Math., 93(2):279–313, 2002.

11. L. Halpern. Optimized Schwarz waveform relaxation: Roots, blossoms and fruits. In
Eighteenth International Conference of Domain Decomposition Methods. Springer, 2009.

12. V. Martin. An optimized Schwarz waveform relaxation method for unsteady convection
diffusion equation. Appl. Numer. Math., 52(4):401–428, 2005.

13. V. Torczon. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines.
PhD thesis, Department of Computational and Applied Mathematics, Rice University,
Houston, 1990.

14. B.M. Tran. Schwarz Waveform Relaxation Methods. PhD thesis, LAGA, Paris 13, 2010.
In preparation.


