
Discontinuous Galerkin and Nonconforming in Time
Optimized Schwarz Waveform Relaxation

Laurence Halpern1, Caroline Japhet1, and Jérémie Szeftel2
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1 Introduction

In many fields of applications such as reactive transport or ocean-atmosphere cou-
pling, models with very different spatial and time scales have to be coupled. Opti-
mized Schwarz Waveform Relaxation methods (OSWR), applied to linear advection-
reaction-diffusion problems in [1, 8], provide efficient solvers for this purpose. They
have two main advantages: first, they are global in time and thus permit non conform-
ing space-time discretization in different subdomains, and second, few iterations are
needed to compute an accurate solution, due to optimized transmission conditions.
It has been proposed in [4] to use a discontinuous Galerkin method in time as a
subdomain solver. Rigorous analysis can be made for any degree of accuracy and lo-
cal time-stepping, and finally time steps can be adaptively controlled by a posteriori
error analysis, see [6, 7, 10].

We present here the 2D analysis of the method. The time interval is split into time
windows, and in each time window, a few iterations of an OSWR algorithm are com-
puted, using second order optimized transmission conditions. The subdomain solver
is the discontinuous Galerkin method in time, and classical finite elements in space.
Coupling between subdomains is done by a simple and optimal projection algorithm
without any additional grid (see [2, 3]). The mathematical analysis is carried out on
the problem semi-discrete in time. The nonconforming DG-OSWR domain decom-
position method is proved to be well-posed and convergent for a decomposition into
strips, and the error analysis is performed in the case of Robin transmission condi-
tions. We present numerical results in two dimensions which extends the domain of
validity of the approach to the fully discrete problem.

We consider the advection-reaction-diffusion equation in R 2, written for varia-
tional purpose in the form
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∂tu+
1
2
∇ · (bu) +

1
2
b · ∇u−∇ · (ν∇u) + cu = f. (1)

The initial condition is u0. The advection and diffusion coefficients bbb = (b1, b2) and
ν, as well as the reaction coefficient c, are piecewise constant, i.e. constant in the
subdomains Ωi, i ∈ {1, ..., I}. The subdomains are strips Ωi = (αi, αi+1) × R,
with α1 = −∞ and αI+1 = +∞. More general geometries as well as piecewise
smooth coefficients will be studied in [5]. We suppose that ν > 0 and c > 0.

2 Local Problem and Time Discontinuous Galerkin

The optimized Schwarz waveform relaxation algorithm, as described in [ 1], intro-
duces a sequence of initial boundary value problems in Ω = (α, β) × R of the
following type:

∂tu+ 1
2∇ · (bu) + 1

2b · ∇u−∇ · (ν∇u) + cu = f in Ω × (0, T ),

(ν ∂n −
bbb · n

2
)u+ Su = g on Γ × (0, T ),

(2)

where n is the unit outward normal to Γ , and S is the boundary operator defined on
Γ = {α, β}×R by Su = p u+ q (∂tu+ r∂yu− s∂yyu). Here p, q, r and s are real
parameters, constrained to p > 0, q ≥ 0, s > 0. If q = 0, the boundary condition
reduces to a Robin boundary condition. We define the bilinear forms m and a by
m(u, v) = (u, v)L2(Ω) + q(u, v)L2(Γ ), and

a(u, v) :=
∫
Ω

(1
2
((bbb · ∇u)v − (bbb · ∇v)u) + ν∇u · ∇v + cuv

)
dx

+
∫
Γ

(
qs∂y u∂yv + q r∂yuv + puv

)
dy. (3)

By the Green’s formula, we obtain a variational formulation of ( 2):

d

dt
m(u, v) + a(u, v) = (f, v)L2(Ω) + (g, v)L2(Γ ), ∀v ∈ V, (4)

with V = H1(Ω) if q = 0 and V = H1
1 (Ω) defined below, if q > 0. The

problem is well-posed: if q = 0, if f is in L2(0, T, L2(Ω)), u0 is in H1(Ω),
and g is in L2(0, T,H1/2(Γ )), then the subdomain problem (2) has a unique solu-
tion u in L2(0, T,H2(Ω)) ∩ H1(0, T ;L2(Ω)). If q > 0, we introduce the spaces
Hs
s (Ω) = {v ∈ Hs(Ω), v |Γ ∈ Hs(Γ )} which are defined for s > 1/2. If

f is in L2(0, T, L2(Ω)), u0 is in H1
1 (Ω), and g is in L2((0, T ) × Γ ), then the

subdomain problem (2) has a unique solution u in L2(0, T,H2
2 (Ω)) with ∂tu ∈

L2(0, T ;L2(Ω) ∩ L2(Γ )), see [1, 9].
We now introduce the time-discontinuous Galerkin method, as described and

analysed in [6]. We are given a decomposition T of the time interval (0, T ), In =
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(tn, tn+1], for 0 ≤ n ≤ N , the mesh size is kn = tn+1 − tn. For B a Banach space
and I an interval of R, define for any integer d ≥ 0

Pd(B, T ) = {ϕ : (0, T )→ B, ϕ|In
=

d∑
i=0

ϕit
i, ϕi ∈ B, 0 ≤ n ≤ N}.

Let B = H1
1 (Ω) if q > 0, B = H1(Ω) if q = 0. We approximate u by a function

U ∈ Pd(B, T ) such that U(0, ·) = u0 and for all V in Pd(B, T ),∫
In

(m(U̇ , V ) + a(U, V )) dt+m(U(t+n )− U(t−n ), V (t+n )) =
∫
In

L(V ) dt, (5)

with L(V ) = (f, V )L2(Ω) +(g, V )L2(Γ ). Due to the discontinuous nature of the test
and trial spaces, the method is an implicit time stepping scheme, and U ∈ Pd(B, T )
is obtained recursively on each subinterval, which makes the method very flexible.

Theorem 1. If p > 0, q ≥ 0, s > 0, Eq. (5) defines a unique solution.

The result relies on the fact that the bilinear form a is positive definite. This is most
easily seen by using a basis of Legendre polynomials.

We will make use of the following remark due to [7]. Introduce the Gauss-Radau
points, (0 < τ1 < . . . < τd+1 = 1), defined such that the quadrature formula∫ 1

0 f(t)dt ≈
∑d+1
q=1 wqf(τq) is exact in P2d, and the interpolation operator In on

[tn, tn+1] at points (tn, tn+ τ1kn, . . . , tn+ τd+1kn). For any χ ∈ Pd, Inχ ∈ Pd+1,
is such that Inχ(tn) = χ(t−n ), Inχ(tn+1) = χ(t−n+1), and therefore for any ψ in
Pd, we have∫

In

d

dt
(Inχ)ψ dt−

∫
In

dχ

dt
ψ dt = (χ(t+n )− χ(t−n ))ψ(t+n ). (6)

As a consequence, we have a very useful inequality:∫
In

d

dt
(Inψ)ψdt ≥ 1

2
[ψ(t−n+1)

2 − ψ(t−n )2]. (7)

Equation (5) can be written in a strong form as

∂t(I U) + 1
2∇ · (bbbU) + 1

2bbb · ∇U −∇ · (ν∇U) + c U = Pf in Ω × (0, T ),(
ν ∂nnn − bbb·nnn

2

)
U + pU + q(∂t(IU) + r∂yU − s∂yyU) = Pg on Γ × (0, T ),

(8)

where P is the L2 projection in time on Pd(B, T ) (B is defined by the underlying
space), and I is the operator whose restriction to each subinterval is In. We discuss
now the iterative algorithm.

3 The Optimized Schwarz Waveform Relaxation Algorithm
Discretized in Time with Different Subdomain Grids

For each subdomain Ωi, the indices of the neighbouring subdomains are j ∈ N i.
Since b is constant in Ωi, equal to bi, 1

2∇ · (biuki ) + 1
2bi · ∇uki = ∇ · (biuki ). At the

continuous level, the algorithm is
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∂tu
k
i +∇ · (bbbiuki − νi∇uki ) + ciu

k
i = f in Ωi × (0, T ), (9)

(νi∂nnni
− bbbi ·nnni

2
)uki + Sijuki = (νj∂nnni

− bbbj ·nnni
2

)uk−1
j + Sij uk−1

j on Γij , j ∈ Ni,

with ν = νi in Ωi, Siju = pij u+ qij (∂tu+ rij∂yu− sij∂yyu).
Theorem 2. For any value of pij > 0, qij = q ≥ 0, rij = r and sij = s > 0, the
algorithm (9) converges in each subdomain to the solution u of problem ( 1).

The proof of this theorem will be given in [5], for general geometries and variable
coefficients. It relies on elaborate energy estimates, the use of Trace Theorems and
the Gronwall Lemma.

Our purpose here is to describe the discrete formulation in detail. The time par-
tition in subdomainΩi is Ti, with Ni + 1 intervals I in, and mesh size kin. In view of
formulation (8), we define interpolation operators I i and projection operators P i in
each subdomain, and we solve

∂t(IiUki ) +∇ · (bbbiUki − νi∇Uki ) + ci U
k
i = P if in Ωi × (0, T ), (10)(

νi∂nnni
− bbbi ·nnni

2
)
Uki + SijU

k
i = P i

(
(νj∂nnni

− bbbj ·nnni
2

)Uk−1
j + S̃ijU

k−1
j

)
on Γij ,

with SijU = pij U + qij (∂t(IiU) + rij∂yU − sij∂yyU) and S̃ijU = pij U +
qij (∂t(IjU) + rij∂yU − sij∂yyU). If the algorithm converges, it converges to the
solution of

∂t(IiUi) +∇ · (bbbiUi − νi∇Ui) + ci Ui = P if in Ωi × (0, T ),(
νi∂nnni −

bbbi ·nnni
2

)
Ui + Sij Ui = P i

(
(νj∂nnni −

bbbj ·nnni
2

)Uj + S̃ij Uj
)

on Γij . (11)

Theorem 3. Assume pij = p > 0. If qij = 0, or if qij = q > 0 with rij = 0,
sij = s > 0 and bbbi = 0, Problem (11) has a unique solution (Ui)i∈J , and Ui is the
limit of the iterates of algorithm (10).

The proof is based on energy estimates (see [5]).
We now state the error estimate.

Theorem 4. Let k = supn kn. If pij = p > 0 and qij = 0, the error between u and
the solution Ui of (11) is estimated by:

I∑
i=1

‖u− Ui‖2L∞(0,T,L2(Ωi))
≤ Ck2(d+1)‖∂d+1

t u‖2L2(0,T ;H2(Ω)). (12)

Proof. We introduce the projection operator P −
i as

∀n ∈ {1, ..., Ni}, P−
i ϕ ∈ Pd(Iin),

P−
i ϕ(tin+1) = ϕ(tin+1), ∀ψ ∈ Pd−1(Iin),

∫
Ii

n

(P−
i ϕ− ϕ)(t)ψ(t) dt = 0.
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We defineWi = P−
i (u|Ωi),Θi = Ui−Wi and ρi = Wi−u|Ωi . Classical projection

estimates in [10] yield the estimate on ρi:

I∑
i=1

‖ρi‖2L∞(0,T,L2(Ωi))
≤ Ck2(d+1)‖∂d+1

t u‖2L2(0,T ;L2(Ω)).

Since Ui − u|Ωi = Θi + ρi, it suffices to prove estimate (12) forΘi. Now, using the
equations of u and Ui, and the identity d

dtIiP
−
i = P i ddt , Θi satisfies:

∂t(IiΘi) +∇ · (bbbiΘi)− νΔΘi + ciΘi = P i(−∇ · (bbbiρi) + νΔρi − ciρi)
+ (1 − P i)∂tu in Ωi × (0, T ),(

νi ∂nnni
− bbbi ·nnni

2
)
Θi + pΘi = P i

(
(νj ∂nnni

− bbbj ·nnni
2

)Θj + pΘj
)

− (1− P i)
(
(νj ∂nnni

− bbbj ·nnni
2

)Wj + pWj

)
on Γij × (0, T ).

(13)

We set ‖ϕ‖i = ‖ϕ‖L2(Ωi) and �ϕ�2
i = νi‖∇ϕ‖2L2(Ωi)

+ c‖ϕ‖2L2(Ωi)
. Multiply the

first equation of (13) by Θi, integrate over (tin, t
i
n+1) × Ωi, using (7) and integrate

by parts in space. Complete the argument by using Cauchy Schwarz inequality:

1
2
‖Θi((tin+1)

−)‖2i +
∫
Ii

n

�Θi(t, ·)�2
i dt−

∫
Ii

n

∫
Γi

(νi∂nnni
Θi−

bbbi ·nnni
2

Θi)Θidy dt

≤ 1
2
‖Θi((tin)−)‖2i + C

∫
Ii

n

‖ρi(t, ·)‖2H2(Ωi)
dt.

Rewriting the boundary integral, we obtain:

1
2
‖Θi((tin+1)

−)‖2i +
∫
Ii

n

�Θi(t, ·) �2
i dt

+
1
4p

∑
j∈Ni

∫
Ii

n

∫
Γij

(νi∂nnni
Θi −

bbbi ·nnni
2

Θi − pΘi)2 dy dt

≤ 1
4p

∑
j∈Ni

∫
Ii

n

∫
Γij

(νi∂nnni
Θi −

bbbi ·nnni
2

Θi + pΘi)2 dy

+
1
2
‖Θi((tin)−)‖2i + C

∫
Ii

n

‖ρi(t, ·)‖2H2(Ωi)
dt.

Using the transmission condition in (13) and the fact that P i and 1− P i are orthog-
onal to each other and have norm 1, we get by a trace theorem:
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1
2
‖Θi((tin+1)

−)‖2i +
∫
Ii

n

�Θi(t, ·) �2
i dt

+
1
4p

∑
j∈Ni

∫
Ii

n

∫
Γij

(νi∂nnni
Θi −

bbbi ·nnni
2

Θi − pΘi)2 dy dt

≤ 1
4p

∑
j∈Ni

∫
Ii

n

∫
Γij

(νj∂nnnj
Θj −

bbbj ·nnnj
2

Θj − pΘj)2 dy +
1
2
‖Θi((tin)−)‖2i

+ C

∫
Ii

n

‖ρi(t, ·)‖2H2(Ωi)
dt+ C

∫
Ii

n

‖(1− P i)(u|Ωi)(t, ·)‖2H2(Ωi)
dt. (14)

Classical error estimates in [10] imply:∫ T

0

‖ρi(t, ·)‖2H2(Ωi)
dt+

∫ T

0

‖(1− P i)(u|Ωi)(t, ·)‖2H2(Ωi)

≤ Ck2(d+1)‖∂d+1
t u‖2L2(0,T ;H2(Ωi))

. (15)

Summing (14) in j and n, and using the previous equation yields (12).

4 Numerical Results

The above analysis deals with continuous problems and problems semi-discretized
in time. We have implemented the algorithm with d = 1 and P1 finite elements in
space in each subdomain using mortar methods like in [3], in order to permit non-
matching grids in time and space on the boundary. Time windows are used in order to
reduce the number of iterations of the algorithm. In the first example, the coefficients
are optimized numerically using the convergence factor. In the second one, formulas
from [1] are used.

We first give an example of a multidomain solution with time windows. The
physical domain is Ω = (0, 1)× (0, 2), the final time is T = 4. The initial value and
the right hand side are u0 = f = e−100((x−0.55)2+(y−1.7)2). The domain Ω is split
into two subdomainsΩ1 = (0, 0.5)× (0, 2) andΩ2 = (0.5, 1)× (0, 2). The reaction
c is zero, the advection and diffusion coefficients are bbb1 = (0,−1), ν1 = 0.05, and
bbb2 = (−0.1, 0), ν2 = 0.1. The mesh size and time step in Ω1 are h1 = 3.93.10−2

and k1 = 2.5.10−2, while inΩ2, h2 = 8.84.10−2 and k2 = 6.25.10−2. In Fig. 1, we
observe, at final time T = 4, that the approximate solution computed using 4 uniform
time windows, with 3 iterations in the first time window, and then 2 iterations in
the next ones (right figure), is close to the reference solution computed in one time
window on a conforming finer space-time grid (left figure).

We analyze now the precision for continuous coefficients. The advection field
is bbb = (− sin(π(y − 1

2 )) cos(π(x − 1
2 )), cos(π(y − 1

2 )) sin(π(x − 1
2 ))), and the

diffusion is ν = 1. The exact solution is given by u(x, t) = cos(πx)sin(πy)cos(πt),
in the unit square. The domain is decomposed into 2 subdomains with the interface
at x = 0.3. The space grid is fixed and non conforming with mesh sizes h 1 = 0.0074
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Fig. 1. Computation using discontinuous Galerkin with time windows.

and h2 = 0.011. We start with four time grids : time grids 1 and 2 are the conforming
finner and coarser ones with respectively 7 and 5 grid points in each domain. Time
grid 3 is nonconforming with 5 grid points in Ω1 and 7 grid points in Ω2, and time
grid 4 is nonconforming with 7 grid points in Ω1 and 5 grid points inΩ2. Thereafter
the time steps are divided by 2 several times. Figure 2 shows the norms of the error in
L∞(I;L2(Ωi)) versus the number of time refinements, for subdomain 1 on the left,
and subdomain 2 on the right. First we observe the order 2 in time for conforming
and nonconforming cases. They fit the theoretical estimates, even though we have
theoretical results only for Robin transmission conditions and the space continuous
problem. Moreover, the error obtained in the nonconforming case, in the subdomain
where the grid is finer, is nearly the same as the error obtained in the conforming
finer case.
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Fig. 2. Error curves versus the refinement in time, for Ω1 (left) and Ω2 (right).



140 L. Halpern et al.

5 Conclusions

We have extended the numerical method proposed in [ 4] to higher dimensions and
analyzed it for heterogeneous advection-reaction-diffusion problems. It relies on the
splitting of the time interval into time windows, in which a few iterations of an
OSWR algorithm are performed by a discontinuous Galerkin method in time, with
projection between space-time grids on the interfaces. We have shown both theo-
retically and numerically that the method preserves the order of the discontinuous
Galerkin method.
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