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1 Introduction

It is well accepted that the efficient solution of complex partial differential equations
(PDEs) often requires methods which are adaptive in both space and time. In this
paper we are interested in a class of spatially adaptive moving mesh (r-refinement)
methods introduced in [9, 10, 12]. Our purpose is to introduce and explore a natural
coupling of domain decomposition, Schwarz waveform relaxation (SWR) [ 4], and
spatially adaptive moving mesh PDE (MMPDE) methods for time dependent PDEs.
SWR allows the focus of computational energy to evolve to the changing behaviour
of the solution locally in regions or subdomains of the space-time domain. In par-
ticular, this will enable different time steps and indeed integration methods in each
subdomain. The spatial mesh, provided by the MMPDE, will react to the local solu-
tion dynamics, providing distinct advantages for problems with evolving regions of
interesting features.

In this paper we detail and compare approaches which couple SWR with moving
meshes. Section 2 provides a brief review of the r-refinement method. We contrast
the related approaches introduced in [6, 7] with a new moving subdomain method
in Sect. 3. We conclude in Sect. 4 with a brief presentation of numerical results to
demonstrate the moving subdomain method.

2 Moving Meshes

A recent and thorough review of moving mesh methods may be found [ 2] and further
details are provided in the extensive bibliography therein.

Moving mesh methods solve for the solution and underlying mesh simultane-
ously. Consider the solution of a PDE of the form

ut = L(u) 0 < x < 1, t > 0,

subject to appropriate initial and boundary conditions, where L denotes a spatial
differential operator in the physical coordinate x. Our goal is to find, for fixed t, a
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one-to-one coordinate transformation

x = x(ξ, t) : [0, 1]→ [0, 1], with x(0, t) = 0, x(1, t) = 1

such that u(x(ξ, t), t) is sufficiently smooth that a simple mesh, often uniform
ξi = i

N , i = 0, . . . , N can be used to resolve solution features in the computa-
tional variable ξ ∈ [0, 1]. The mesh in the physical coordinate x is then specified
from the mesh transformation by xi(t) = x(ξi, t), i = 0, 1, . . . , N .

A standard way to perform mesh adaptation in space is to use the equidistribution
principle (EP). Given some measure M(t, x, u) of the error in the solution, the (EP)
requires that the mesh points satisfy∫ xi

xi−1

M(t, x̃, u) dx̃ ≡ 1
N

∫ 1

0

M(t, x̃, u)dx̃,

or equivalently ∫ x(ξi,t)

0

M(t, x̃, u) dx̃ =
i

N
θ(t) = ξiθ(t), (EP)

where θ(t) ≡
∫ 1

0 M(t, x̃, u) dx̃ is the total error in the solution.
Enforcing this condition concentrates mesh points whereM or the error is large.

It follows directly from (EP) that

∂

∂ξ

{
M(t, x(ξ, t), u)

∂

∂ξ
x(ξ, t)

}
= 0. (1)

Discretizing (1) and the physical PDE spatially results in an index-2 DAE system
which is stiff and ill-conditioned – a problem numerically [ 1]. Consequently, the (EP)
is often relaxed to require equidistribution at a later time t + τ . Using Taylor series
and dropping higher order terms a number of parabolic MMPDEs are developed.
One particularly useful MMPDE is

ẋ =
1
τ

∂

∂ξ

(
M(t, x(ξ, t), u)

∂x

∂ξ

)
. (MMPDE5)

The relaxation parameter τ is chosen in practice so that the mesh evolves at a rate
commensurate with that of the solution u(x, t). A simple, popular choice is the ar-
clength like monitor functionM(x, u, t) = (1 +α|ux|2)1/2. This choice is based on
the premise that we expect the error in the numerical solution to be largest in regions
where the solution has large gradients. The choice of monitor function is often prob-
lem class dependent; generally M is related to specific powers of the solution or its
derivatives. For the generalization to two and three spatial dimensions, the reader is
referred to [8].

Using the mesh transformation x = x(ξ, t) to rewrite the physical PDE in quasi-
Lagrangian form we have u̇ − uxẋ = Lu, where u̇ = ut + uxẋ. The MMPDE
and physical PDE are solved simultaneously for the mesh x(ξ, t) and corresponding
solution u(x(ξ, t), t). Traditionally, this system is solved using the moving method of
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lines (MMOL) approach – the problem is discretized in space and the resulting sys-
tem of ODEs is solved using a stiff IVP solver like DASSL [11]. Initial and boundary
conditions for the physical PDE come from the problem description. On a fixed in-
terval we specify ẋ0 = ẋN = 0 as boundary conditions for the mesh. If the initial
solution is smooth then an initial uniform mesh for x(ξ, 0) is normally sufficient, else
an initial mesh is computed which equidistributes u(x, 0).

This traditional MMOL approach is not able to exploit local time scales in spe-
cific components of the solution – rather a single step size is used for all components.
In practice, time step selection, via local error control, is often dictated by a very few
components which are localized spatially. This suggests that a spatial partitioning
via a domain decomposition (DD) approach may exploit these local time scales. A
DD strategy would also enable different solution strategies in regions of a space and
time; in particular a mixture of fixed and moving grids may be used as dictated by the
solution. Of course various DD methods are amenable to parallel implementation –
an approach not commonly utilized by the moving mesh community.

3 Domain Decomposition Strategies

Moving mesh methods naturally provide two spatial variables: the physical co-
ordinate x and the computational co-ordinate ξ. DD methods partition the spatial
variable into overlapping or non-overlapping subdomains. SWR iteratively solves
the PDE forward in time on each subdomain. Boundary information is exchanged at
the end of a time window. Designing an algorithm which couples DD and moving
meshes requires a choice of the spatial variable to partition – resulting in dramatically
different DD methods, see Fig. 1.

The physical space-time domain Ω is divided into non-overlapping subdomains
Ω̃j with boundaries ∂Ω̃j . Γ̃j is the portion of ∂Ω̃j interior to Ω. An overlapping de-
compositionΩj is created by enlarging each Ω̃j in such a way so that the boundaries
of Ωj interior to Ω, Γj , are at least some distance δ > 0 from Γ̃j .

(a) In x variable as in [7] (b) In x variable as in [6] (c) In ξ variable – moving
subdomains

Fig. 1. A typical subdomain for the three SWR Moving Mesh Methods.
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In this section we describe and contrast two approaches [6, 7] which utilize SWR
in the physical coordinate x with a new strategy which applies SWR to the MMPDE
in the computational coordinate ξ. As we will see this new approach gives rise to
moving subdomains.

3.1 SWR in Physical Co-ordinates – Existing Methods

The first attempts [6, 7] to couple SWR and moving mesh methods use partitions of
fixed width in the physical space.

In [7], depicted in Fig. 1a, the width of Ω̃j is fixed. The overlap region is spec-
ified by a number of mesh points. The mesh points in the interior of Ω̃j and in the
overlap region are free to move according to the MMPDE. In this way we recover
much of the strength of the moving mesh approach. The position of Γ̃j is fixed to
ensure a reasonable partitioning of the physical space and allow the user to ensure a
sufficient resolution of the subdomain by specifying an acceptable number of mesh
points. Moving mesh methods are designed to prevent mesh crossings, hence the
fixed location of Γ̃j does restrict the free flow of mesh points in and out of the over-
lap region. A modification of moving mesh software is required to fix the location of
Γ̃j within Ωj .

The algorithm solves the coupled system of physical PDE and MMPDE itera-
tively on overlapping subdomains. After each subdomain solve (in the Gauss–Seidel
approach) or after all the subdomain solves (in the Jacobi variant) boundary infor-
mation is exchanged. Dirichlet transmission conditions are specified on each subdo-
main. Unlike typical SWR methods, both the solution of the physical PDE on the
boundary and the location of the boundary itself is exchanged. Since the overlap is
a simply a number of mesh points, the location of the boundary of the neighbouring
subdomain for the next iteration is extracted directly from a specific mesh trajec-
tory obtained during the subdomain solve. The solution along that moving boundary
provides the boundary data for the physical PDE. Interpolation in time is required
as subdomains are free to choose time steps dictated by their own local solution
dynamics.

In [6] it was realized that it is unnecessary to fix the location of Γ̃j . As illustrated
in Fig. 1b the extended subdomain Ωj is of fixed width in the physical space, the
position of Γj is fixed. The overlap is of fixed width but now mesh points are able
to move in and out of the overlap region as directed by solution. Indeed, it differs
from the typical SWR approach (cf. [3, 4]) only in the choice of the solver on each
subdomain. The moving mesh solver may be used without modification. Hence [ 6]
is better aligned with the motivation and philosophy of the DD approach.

As in [7] the user is responsible to ensure a sufficient number of mesh points
reside in each subdomain to resolve any features which may arise. Although this
approach may not be scalable, it may be useful in situations where the solution has
many interesting features developing in disparate locations in the physical space.
Current moving mesh methods on one domain have difficulty with this situation.
The ability to vary the number of mesh points on each subdomain makes it easier to
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ensure a sufficient number of mesh points in all parts of physical space. This sug-
gests that this technique should be coupled with time windows and a mechanism to
estimate the number of points required on that time window, ie. use an hr-refinement
strategy on each subdomain. Work is ongoing to explore this idea.

The fixed location of Γj in [6] provides the advantage of being able to reuse qual-
ity moving mesh software as the solver on each subdomain. However, interpolation
in both space and time is required to obtain the correct boundary data for the next
iteration. Within each subdomain the mesh points are all moving, hence there is no
guarantee that a mesh point will be located at position Γj at any instant in time. As a
result, the boundary data for the physical PDE is obtained by interpolating (in space)
the solution on the neighbouring subdomain. Subsequent interpolation in time may
be required to provide the correct boundary data at the sequence of time steps chosen
by the IVP software.

Applying a SWR moving mesh method in physical coordinates is conceptually
analogous to the previous descriptions of Schwarz waveform relaxation on fixed
grids. However, as mentioned above there are many practical challenges posed by
using the moving mesh solver on each subdomain. The fixed boundaries of each sub-
domain require a careful choice of the number of mesh points and relatively costly
interpolations to provide the boundary conditions for adjacent subdomains. The stan-
dard DD method (with fixed and uniform grids) divides the total number of physical
mesh points evenly amongst the subdomains. There is a direct correspondence be-
tween the number of mesh points and the width of each subinterval. If we partition
in physical space, we can not (in general) simply divide the number of mesh points
required for the one domain solve evenly amongst the number of subdomains. Hence
the algorithm may not scale appropriately. We begin to address these difficulties with
the new method presented in the next section.

3.2 SWR in Computational Co-ordinates – A New Approach

In this paper we introduce a decomposition of the computational co-ordinate ξ into
overlapping subdomains of fixed width, see Fig. 1(c). The boundaries Γj are fixed in
ξ-space, which gives rise to time dependent boundaries in physical space – we have
a moving subdomain method.

In the discrete version of the algorithm a subdomain is simply defined by a set
number of mesh points not a region of physical space. We divide the number of mesh
points required for the one domain solve evenly amongst the subdomains. As a result
the method is (at least) spatially scalable. This allows mesh points (and subdomains)
complete freedom to move throughout the physical space as controlled by the dynam-
ics of the underlying solution. The subdomains provide a coarse grain adaptivity –
they are chosen to automatically equidistribute the error measure in the solution and
must (at least approximately) equidistribute the computational effort to compute it.

The overlap region is of fixed width in the computational space but is specified
only by a fixed number of mesh points in the physical space. The required boundary
values of the subdomain solution, at any time t, is obtained by interpolating the
solution from the neighbouring subdomains from the previous iteration. Since the
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location of the boundary is obtained from the neighbouring subdomains directly,
only interpolation in time is required.

4 Numerical Results and Comments

Numerical results for SWR applied in the physical coordinates may be found in [ 6,
7]. Here we illustrate the new moving subdomain method for a typical test problem
for moving mesh methods taken from [10]. Consider the function

u(x, t) =
1
2

[1− tanh(c(t)(x − t− 0.4))]

c(t) = 1 +
999
2

[1 + tanh(100(t− 0.2))] , 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.55.

Fig. 2. Exact solution of test problem.

The exact solution, illustrated in Fig. 2, has regions of rapid transition in space
and time. The surface is shaded according to the (spatial) gradient. A typical hyper-
bolic tangent profile develops just before t = 0.2 and then moves from left to right
(in x).

The mesh transformation which satisfies (MMPDE5) for u(x, t) is given in
Fig. 3. The heavily shaded region has small dx/dξ values – these flat regions in
the mesh transformation indicate a high concentration of mesh points. By design this
region of high resolution corresponds to the location of sharp transition in u in Fig. 2.

In Fig. 4 we depict the mesh movement by drawing the mesh trajectories obtained
during the one domain solution. Each line corresponds to the position of a grid point
as a function of time. The mesh lines concentrate just before t = 0.2, the moment of
front formation and follow the front to the right.

Figure 5 demonstrates the moving subdomains which result by solving ( MMPDE5)
using a SWR method in the computational coordinate ξ. Three subdomains are il-
lustrated for two subsequent Schwarz iterations. We see that the boundaries of the
subdomain are time-dependent and in fact change from iteration to iteration. The
subdomains consist of an equal number of mesh points and automatically adapt to
the dynamics of the solution.

Theoretical results for the alternating Schwarz iteration applied to the steady
form of (1) are now available [5] and give a local convergence result. In fact, numeri-
cal evidence suggests a more robust performance. Extensions of theoretical results in
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Fig. 3. One domain mesh transformation sat-
isfying the relaxed EP.

Fig. 4. One domain mesh trajectories.

(a) Schwarz iteration 1. (b) Schwarz iteration 2.

Fig. 5. Mesh trajectories for three moving subdomains on subsequent Schwarz iterations.

the time dependent case are underway. MPI code for the two spatial dimension ver-
sion of the algorithm presented in [6] is complete and rigourous numerical studies
have commenced. Clearly, improved performance of these DD approaches require
the development of optimal transmission conditions tuned for this class of problems.
Theoretical investigations and numerical experimentation are in progress.
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