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Summary. A mixed multiscale finite element method (MsFEM) for wave equations is pre-
sented. Global information is used in the mixed MsFEM to construct multiscale basis func-
tions. The solution of the wave equation smoothly depends on the global information. We
investigate the relation between the smoothness of the global information and convergence
rate of the mixed MsFEM.

1 Introduction

Over the past few decades, there has been growing interest in wave propagation
in heterogeneous media. Many important problems such as earthquake motions,
oceanography, medical and material sciences, and the morphology of oil and gas
deposits can be understood through some use of mathematical and numerical model-
ings of wave propagation in heterogeneous media. In addition to heterogeneity, wave
propagation is also a challenging multiscale problem. Among typical length scales
present in wave propagation are wave length, propagation distance, and correlation
length. In some problems such as in reflection seismology, the wave can propagate
over a distance significantly larger than the wave length.

Consideration for accuracy suggests that the heterogeneity of media has to be suf-
ficiently resolved when numerically simulating wave propagation, which can easily
results in very expensive computations. While much more efficient and inexpensive
in practice, standard upscaling techniques and multiscale methods employing some
local information often fail to accurately transfer the fine scale information in media
to the coarse formulation. Previous investigations (see e.g., [ 8]) indicate that appro-
priately taking into account some type of global information can potentially improve
the accuracy of the multiscale methods. The importance of global information has
been illustrated in porous media flow within the context of upscaling procedures [ 2]
and also in multiscale finite (volume) elements [1]. The information is determined by
some global fields that the solution of equations smoothly depends on. In the context
of weak formulation, this global field is imbedded in the (multiscale) basis functions
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which in turn is used to represent the solution. Our objective is to develop a mixed
MsFEM using global information that can capture the solution of wave equations in
multiscale heterogeneous media and to make a priori error estimates for the mixed
MsFEM.

The rest of the paper is organized as follows. In Sect. 2, we present some pre-
liminaries. In Sect. 3, we present a mixed MsFEM for a model wave equation us-
ing global information and derive the error estimates. Some conclusions are drawn
finally.

2 Preliminaries

In this section, we describe a model wave equation and some notations of function
spaces.

Define Dtt to be the second order partial derivative operator with respect to t.
Let a(x) and u(t, x) represent the density of the material and the unknown pressure,
respectively. We define a time-space domainΩT := (0, T ]×Ω. Then a model wave
equation reads as following:

Dttu(t, x)−∇ · a(x)∇u(t, x) = f(t, x) in ΩT

u(t, x) = 0 on [0, T ]× ∂Ω
u(x, 0) = g0(x) in Ω

Dtu(x, 0) = g1(x) in Ω.

(1)

Here we assume that a(x) is uniformly positive, symmetric and bounded in Ω. We
assume that f(t, x), g0(x) and g1(x) are smooth and do not have multiscale struc-
tures. This equation arises from geophysics and seismology. It is frequently observed
that the spatial scales inherent in a(x) cannot be clearly separated.

We introduce some notation which are used in the following sections. The
usual Lebesgue and Sobolev spaces are denoted by Lp(D), W k,p(D). In particu-
lar, Hk(D) := W k,2(D). Define H(div,D) := {f |f ∈ [L2(D)]d and ∇ · f ∈
L2(D)}. The vector-valued Sobolev space is equipped with the norm

‖u‖Wm,p(0,T ;X) :=

(∫ T

0

∑
0≤k≤m

‖Dk
t u‖

p
Xdt

) 1
p

,

when X is a normed space. If p = 2, we use Hm(0, T ;X) instead. When no ambi-
guity occurs, we use Wm,p(X) to denoteWm,p(0, T ;X).

Without loss of generality, our discussion is concentrated on problems in Ω ⊂
R2. We denote by K a generic coarse element with h = diam(K), and τh a quasi-
uniform family of coarse elements K . We shall not write the variables x and t for
simplicity of presentation.
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3 Mixed MsFEM Analysis

In this section, we first present a mixed MsFEM for the wave equation (1) using
multiple global information, and then derive a priori error estimates in pressure and
velocity.

3.1 Mixed MsFEM Formulation

Let velocity σ = a∇u. Then the mixed formulation for (1) is to find {u, σ} :
[0, T ] −→ L2(Ω) ×H(div,Ω) such that

(Dttu,w)− (∇ · σ,w) = (f, w) ∀w ∈ L2(Ω)

(a−1σ, χ) + (u,∇ · χ) = 0 ∀χ ∈ H(div,Ω)

(u(0), w) = (g0, w) ∀w ∈ L2(Ω)

((Dtu)(0), w) = (g1, w) ∀w ∈ L2(Ω)

(a−1σ(0), χ) = (∇g0, χ) ∀χ ∈ H(div,Ω).

(2)

We use global fields σi (i = 1, · · · , N ) to build velocity basis function. We
formulate an assumption for the global fields as following.
Assumption 1 There exist functions σ1, · · · , σN and A1(t, x), · · · , AN (t, x) such
that

σ =
N∑
i=1

Ai(t, x)σi,

where Ai(t, x)’s are smooth functions (we specify their smoothness later) and σi =
a(x)∇pi (i = 1, ..., N ) solves an elliptic equation∇·a(x)∇pi = 0 with appropriate
boundary conditions.

Remark 1. As an example in 2D, let u1 and u2 be the solution of the following equa-
tions

∇a · ∇ui = 0 in Ω

ui = xi on ∂Ω, i = 1, 2.
(3)

set u = u(t, u1, u2), then

σ = a∇u =
2∑
i=1

∂u

∂ui
a∇ui :=

2∑
i=1

Ai(t, x)σi,

where Ai(t, x) = ∂u
∂ui

. Here σi = a∇ui are the global fields. Provided that f ∈
L∞(Lp(Ω)) ∩H1(Lp(Ω)) , g1 ∈ W 1,p(Ω) and Dttu(0) ∈ Lp(Ω), then the proof
Theorem 1.1 in [8] implies that Ai(t, x) = ∂u

∂ui
∈ L∞(W 1,p(Ω)). Consequently

Ai(t, x) ∈ L2(C1− 2
p (Ω)) if p > 2 by using the Sobolev embedding theorem.
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To numerically approximate the mixed problem ( 2), we construct the basis func-
tion for the velocity σ,

∇ · (a(x)∇φKij ) =
1
|K| in K

a(x)∇φKij · nKel
= δjl

σi · nKel∫
el
σi · nel

ds
on ∂K,

(4)

where i = 1, ..., N and j is the index of the edges of the coarse block K (a triangle
or rectangle), and

δjj = 1, δjl = 0 if j �= l.

Here el denotes an edge of the coarse block. We shall omit the subscript e l in n if the
integral is taken along the edge. Note that for each edge, we have N basis functions
and we assume that σ1,..., σN are linearly independent in order to guarantee that the
basis functions are linearly independent. To avoid the possibility that

∫
el
σi · nds is

zero or unbounded, we make the following assumption for the convergence analysis.
If

∫
el
σi · nds = 0 on some el, we can use the local mixed MsFEM basis function

proposed in [3], i.e., replace
σi · nKel∫

el
σi · nel

ds
with 1

|el| in (4).

Assumption 2∫
el

|σi · n|ds ≤ Chβ1 and ‖ σi · n∫
el
σi · nds

‖Lr(el) ≤ Ch−β2+
1
r −1

uniformly for all edges el, where β1 ≤ 1, β2 ≥ 0 and r ≥ 1.
We would like to note that Assumption 2 is used to define the boundary data for

the velocity basis equations well and to bound the velocity basis function ψK
ij . In

fact, Assumption 2 implies that ‖ψKij ‖0,K ≤ Ch−β2 (see [1]). If σi are bounded in
L∞(el) for all el and |

∫
el
σi ·nds| remains positive uniformly for all e l, then β1 = 1

and β2 = 0. The index r is only related to the Lr norm that appeared in Assumption
2 and has nothing to do with the convergence rate. We would like to note that local
mixed MsFE basis function introduced in [3] is a special case defined in (4). To do
this, one just needs to replace σ1 in (4) by a constant vector.

We define ψKij = a(x)∇φKij and

Σh =
⊕
K

{ψKij } ⊂ H(div,Ω).

Let Qh =
⊕

K P0(K) ⊂ L2(Ω), i.e., piecewise constants, be the basis functions
approximating u. For t > 0, we define

Πh|Kσ(t) =
∑
i,j

(
∫
ej

Ai(t, x)σi · ndx)ψKij

The numerical mixed formulation is to find {uh, σh} : [0, T ] −→ Qh×Σh such
that
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(Dttuh, w) − (∇ · σh, w) = (f, w) ∀w ∈ Qh
(a−1σh, χ) + (uh,∇ · χ) = 0 ∀χ ∈ Σh

(uh(0), w) = (g0, w) ∀w ∈ Qh
((Dtuh)(0), w) = (g1, w) ∀w ∈ Qh

(σh(0), χ) = (σ(0), χ) ∀χ ∈ Σh.

(5)

3.2 A Priori Error Estimates for Continuous Time

Before we proceed with the convergence analysis of the mixed MsFEM for the wave
equation, we recall some properties for the basis defined in (4). By Lemma 3.1 in
[1], it follows that

σi|K =
∑
j

βKij ψ
K
ij , (6)

where βKij =
∫
ej
δijσi · ndx. For the interpolatorΠh, Lemma 3.2 in [1] claims

(∇ · (σ −Πhσ), w) = 0 w ∈ Qh. (7)

Let Ph be L2(Ω) orthogonal projection onto Qh. We define

‖σ‖2L2
a(Ω) =

∫
Ω

σt · a−1(x)σdx, ‖σ‖2L2(0,T ;L2
a(Ω)) =

∫
ΩT

σt · a−1(x)σdxds.

By using (7) and standard estimate techniques (e.g., Schwarz inequality, Grow-
nall’s inequality, Jensen’s inequality and triangle inequality), we can obtain the fol-
lowing lemma.

Lemma 1. [6] Let {u, σ} and {uh, σh} be respectively solution of (2) and (5). Then

‖u− uh‖2L∞(L2(Ω)) + sup
t
‖
∫ t

0

(σ(s) − σh(s))ds‖2L2
a(Ω)

≤ C(‖Phu− u‖2L∞(L2(Ω)) + ‖Πhσ − σ‖2L2(L2
a(Ω))).

(8)

By Lemma 1, we get an priori error estimate for the scheme defined in (5).

Theorem 1. Suppose that f ∈ L2(L2(Ω)), g0 ∈ H1(Ω) and g1 ∈ L2(Ω). Let
{u, σ} and {uh, σh} be solution of (2) and (5), respectively. If Assumption 1 and
Assumption 2 hold and Ai(t, x) ∈ L2(Cα(Ω)) for i = 1, · · · , N , then for α+ β1 −
β2 − 1 > 0,

‖u− uh‖L∞(L2(Ω)) + sup
t
‖
∫ t

0

(σ(s) − σh(s))ds‖L2
a(Ω) ≤ Chmin(1,α+β1−β2−1).

Proof. If the source term f ∈ L2(L2(Ω)), the initial conditions g0 ∈ H1(Ω) and
g1 ∈ L2(Ω), then u ∈ L∞(H1(Ω)) (see [5]). Thanks to the fact that Ph is the
L2(Ω) projection ontoQh,
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‖u− Phu‖L∞(L2(Ω)) ≤ Ch|u|L∞(H1(Ω)), (9)

which estimates the first term of right hand side in (8). Next we estimate the term
‖σ −Πhσ‖2L2(L2

a(Ω)). Define

AKij (t) =
∫
ej

Ai(t, s)σi · nds

on each elementK . With Āji the average Ai(x) along ej , then

|AKij − Ā
j
iβ
K
ij | = |

∫
ej

Aiσi · nds− Āji
∫
ej

σi · nds|

≤ Chα+β1‖Ai(t)‖Cα(Ω),

(10)

where we have used the Assumption 2.
Invoking Assumption 1, (6) and ‖ψKij ‖0,K ≤ Ch−β2 , see [1], we have in each

element K

‖σ −Πhσ‖2L2(0,T ;L2
a(K)) =∫ T

0

∫
K

∑
i,j

(Ai(t, x)βKij −AKij (t))ψKij · a−1
∑
i,j

(Ai(t, x)βKij −AKij (t))ψKij dxdt

≤ C

∫ T

0

∫
K

(
∑
i,j

(Ai(t, x)βKij −AKij (t))ψKij )2dxdt

= C‖
∑
i,j

(Ai(t, x)βKij −AKij (t))ψKij ‖2L2(0,T ;L2(K))

≤ C‖
∑
i,j

(Ai(t, x) − Āji (t))βKij ψKij ‖2L2(0,T ;L2(K))

+ C‖
∑
i,j

(Āji (t)β
K
ij −AKij (t))ψKij ‖2L2(0,T ;L2(K))

≤ Ch2(α+β1)(
∑
i

‖Ai‖2L2(0,T ;Cα(K)))
∑
ij

‖ψKij ‖20,K

≤ Ch2(α+β1−β2)(
∑
i

‖Ai‖2L2(0,T ;Cα(K))),

(11)

where we have used the facts that Ai ∈ L2(0, T ;Cα(Ω)) and (10). After making
summation over all K in (11), we have

‖σ −Πhσ‖L2(0,T ;L2
a(Ω)) ≤ Chα+β1−β2−1. (12)

Taking into account (9) , (12) and (8), the proof is complete.

If the functions Ai(t, x) (i = 1, · · · , N ) in Assumption 1 have better regularity
with respect to time t, we can obtain an convergence rate as follows:
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Theorem 2. Let {u, σ} and {uh, σh} be the solution of (2), respectively and (5). If
Assumption 1, 2 hold andAi(t, x) ∈ L∞(Cα(Ω))∩H1(Cα(Ω)) for i = 1, · · · , N ,
then for α+ β1 − β2 − 1 > 0,

‖u− uh‖L∞(L2(Ω)) + ‖σ − σh‖L∞(L2
a(Ω)) ≤ Chmin(1,α+β1−β2−1).

The proof can be found in [6].

Remark 2. If global fields ui(i = 1, 2) are defined in Remark 1, then σ =
∑2

i=1

Ai(t, x)σi, whereAi(t, x) = ∂u
∂ui

and σi = a∇ui. Provided that f ∈W 1,∞(Lp(Ω))
∩W 2,p(Lp(Ω)), Dttu(0) ∈ W 1,p(Ω) and Dtttu(0) ∈ Lp(Ω), then the proof
Lemma 2.6 in [8] implies that Ai(t, x) = ∂u

∂ui
∈ W 1,∞(W 1,p(Ω)). Consequently

Ai(t, x) ∈ H1(C1− 2
p (Ω)) if p > 2 by using Sobolev embedding theorem.

3.3 A Priori Error Estimate for Discrete Time

We introduce the following notation for time-discetization,

Dtu
1
2 =

u1 − u0

Δt
, Dttu

n =
un+1 − 2un + un−1

Δt2
.

Because we assume that the media has only spatial multiscales, we use the mixed
MsFEM for the space discretization and use conventional finite difference schemes
to discretize the temporal variables. As an explicit-in-time scheme, the fully mixed
formulation is to find {un+1

h , σn+1
h } ∈ Qh ×Σh such that

(Dttu
n
h, w)− (∇ · σnh , w) = (fn, w) ∀w ∈ Qh

(a−1σn+1
h , χ) + (un+1

h ,∇ · χ) = 0 ∀χ ∈ Σh
(u0
h, w) = (g0, w) ∀w ∈ Qh

(
2
Δt
Dtu

1
2
h , w)− (∇ · σ0

h, w) = (f0 +
2
Δt
g1, w) ∀w ∈ Qh

(σ0
h, χ) = (σ(0), χ) ∀χ ∈ Σh.

(13)

It is known that the scheme in (13) is conditional stable (refer to [4]) and that the
time consistence error is O(Δt2) if u(t, x) is sufficiently smooth with respect to t.
Consequently, we can use Theorem 2 and follow the proof of Theorem 5.2 in [4] to
obtain the following estimate.

Theorem 3. Let {u, σ} and {uh, σh} be solution of (2) and (13), respectively. If
u(t, x) is sufficiently smooth with respect to t and the assumptions in Theorem 2 are
satisfied, then

sup
tn

‖u− unh‖L2(Ω) + sup
tn

‖σ − σnh‖L2
a(Ω) ≤ C(hmin(1,α+β1−β2−1) +Δt2).

We would like to note that an implicit-in-time scheme for the wave equation is pre-
sented in [4].
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4 Conclusions

In the paper, we present a mixed MsFEM for a wave equation using global infor-
mation. The global information is described by global fields (velocity fields). For
construction of velocity basis functions, the global fields are employed. A prior error
estimates are derived for the wave equation by the mixed MsFEM. The numerical
results in some recent works (e.g., [6, 7, 8]) demonstrate that using global fields can
capture non-local effects in simulations and significant improve accuracy and effi-
ciency when the media are heterogenous and their scales are non-separable.
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