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1 Introduction

Optimized Schwarz methods form a class of domain decomposition methods for
the solution of partial differential equations. Optimized Schwarz methods employ a
first or higher order boundary condition along the artificial interface to accelerate
its convergence. In the literature, analysis of optimized Schwarz methods rely on
Fourier analysis and so the domains are restricted to be regular (rectangle or disk).
By expressing the interface operator in terms of Poincare–Steklov operators, we are
able to derive upper bounds of the spectral radius of the operator for Poisson-like
problems for two essentially arbitrary subdomains. For a first order (Robin) boundary
operator, an optimal choice of the parameter in the boundary operator leads to an
upper bound of 1 − O(h1/2) of the spectral radius, where h is the discretization
parameter. For a certain higher order boundary operator, a clever choice of the two
parameters in the boundary operator leads to an upper bound of 1 − O(h 1/4) of
the spectral radius. These agree with the predicted rates for rectangular subdomains
available in the literature and are also the observed rates in numerical simulations.
This contribution summarizes the author’s work in [11, 12].

Let Ω be a bounded domain in IRN with a smooth boundary. Suppose Ω is
composed of two nonoverlapping open subdomains, that is, Ω = Ω 1 ∪ Ω2 with
Ω1 ∩Ω2 = ∅. Assume that the artificial boundary Γ = Ω 1 ∩Ω2 is non-trivial (non-
zero measure in RN−1) and is a smooth curve. We shall always assume that ∂Ωi \Γ
is non-trivial for both i = 1, 2.

Recall the trace space

H
1/2
00 (Γ ) = {v|Γ , v ∈ H1

0 (Ω)}

with dual H−1/2(Γ ). For i = 1, 2, let

Vi = {vi ∈ H1(Ωi), vi = 0 on ∂Ωi ∩ ∂Ω}.

Define the trace operators Ti : Vi → H
1/2
00 (Γ ) by
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Tivi = vi|Γ , vi ∈ Vi.

For simplicity, consider the model problem

−�u = f onΩ, u = 0 on ∂Ω.

One candidate for the subdomain problem is

−�ui = f on Ωi,

ui = p on Γ

with ui ∈ Vi for some function p ∈ H
1/2
00 (Γ ). Note that p is the correct function

(p = Tiu) if
∂u1

∂ν1
+
∂u2

∂ν2
= 0 on Γ.

This is known as the transmission condition. Define u i = uei +zi where uei = Hip ∈
Vi is the harmonic extension of p:

−�uei = 0 on Ωi,

uei = p on Γ

and zi = �−1
i f where �i is the Laplacian operator with domain H 1

0 (Ωi). Define

the Poincare–Steklov operators Si : H1/2
00 (Γ )→ H−1/2(Γ ) by

Sip =
∂Hip
∂νi

or by

〈Sip, q〉 =
∫
Ωi

∇pe · ∇qe, ∀p, q ∈ H1/2
00 (Γ )

with pe = Hip, qe = Hiq. In the above inner product, S i is self-adjoint and positive
definite. Hence the transmission condition can also be expressed as

(S1 + S2)u|Γ = w (1)

for some w.

2 First-Order Boundary Condition

In [10], the author defined the Schwarz sequence {u (n)
i ∈ Vi, n ≥ 0} by

−�u(n)
i = f on Ωi,

∂u
(n)
i

∂νi
+ λu

(n)
i = g

(n)
i on Γ. (2)
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Here λ is a positive constant. Noting that ν1 = −ν2 on Γ , the Robin data can be
updated as

g
(n+1)
3−i = −∂u

(n)
i

∂νi
+ λu

(n)
i on Γ, i = 1, 2.

The iteration can be started for any initial g (0)
i ∈ L2(Γ ). In practice, the choice

g
(0)
i = 0 is convenient.

The following is an equivalent update ([2]):

g
(n+1)
3−i = 2λu(n)

i − g(n)
i on Γ, i = 1, 2. (3)

Note that the subdomain computations can be carried out concurrently. Many authors
have studied the convergence of this method and the choice of the optimal parameter.
See [1, 12, 15] which are most pertinent to this paper.

The function g2 can be eliminated in (3) to obtain the following equation for g1:[
I − (I − 2λ(S2 + λ)−1)(I − 2λ(S1 + λ)−1)

]
g1

= 2λb ≡ 2λ(T2z2 − (I − 2λ(S2 + λ)−1)T1z1).

The operator for g1 has alternative representations

I − (S2 + λ)−1(S2 − λ)(S1 − λ)(S1 + λ)−1

= (S2 + λ)−1
(
(S2 + λ)(S1 + λ)− (S2 − λ)(S1 − λ)

)
(S1 + λ)−1

= 2λ(S2 + λ)−1(S1 + S2)(S1 + λ)−1.

Thus the above equation for g1 is equivalent to

(S2 + λ)−1(S1 + S2)(S1 + λ)−1g1 = b.

Recognizing that (S1 + λ)−1g1 = T1(u − z1) where u is the exact solution of the
global Poisson equation and (g1, g2) is the solution of (3), we see that Lions’ method
is an iterative method which solves (1) using the left preconditioner (S2 + λ)−1.

Lions’ method is equivalent to the following iterative method

g
(n+1)
1 = Ghg(n−1)

1 + b (4)

to solve for the discrete counterpart of the boundary function g 1 where

Gh ≡ (I − 2λ(S2,h + λ)−1)(I − 2λ(S1,h + λ)−1)
= (S2,h + λ)−1(S2,h − λ)(S1,h + λ)−1(S1,h − λ).

Here Si,h is a finite element discretization of Si.
For a square matrix A, let the spectral radius of A be denoted by ρ(A). The

convergence of the iteration (4) depends on ρ(Gh) which will be analyzed below. In
the following, | · | denotes the two-norm. We shall use c, c1, c2 to denote positive
constants whose values may differ in different occurrences.
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The analysis for the upper bound of ρ(Gh) is identical to that for the ADI method
to solve PDEs. This is because Gh has the same form as the operator in the ADI
method. Note

ρ(Gh) ≤ |Gh| ≤ |(S1,h + λ)−1(S1,h − λ)| |(S2,h + λ)−1(S2,h − λ)|,

Since S1,h and S2,h are symmetric and their eigenvalues have the same asymptotic
behaviour, it is not difficult to show

Theorem 1.

ρ(Gh) ≤
{

1− c1λh, λ ≤ h−1/2;
1− c2λ−1, λ ≥ h−1/2.

(5)

In case λ = O(h−1/2), then ρ(Gh) ≤ 1− ch1/2.

A lower bound for ρ(Gh) is considerably more difficult to establish than an upper
bound. In fact, we have only been able to obtain a lower bound for λ in special
intervals. For λ = hs with s ∈ (−∞,−1) ∪ (0,∞), the upper bound established in
the theorem is actually sharp. In the more interesting range s ∈ [−1, 0], the analysis
is more complicated because Gh is a product of two symmetric indefinite matrices.
We conjecture that the bounds in (5) are sharp for s ∈ [−1, 0] as well.

We conclude this section by mentioning that the analysis has been extended to
the case of PDEs with discontinuous coefficients. See [3].

3 Higher-Order Boundary Condition

One popular optimized Schwarz method using a second order boundary condition
along the artificial interface is

−d
2ui
dτ2

+ η
dui
dνi

+ λui = gi on Γ

where η and λ are positive parameters and τ is a unit tangent vector along Γ . In the
literature, see [4, 5, 6, 7, 8, 9, 13, 14], for instance, Fourier analysis is used to analyze
the convergence of the schemes, which means that the theory is applicable only to
regular (rectangular) subdomains.

For i = 1, 2, the subdomain problems are

−�u(n)
i = f on Ωi,

−∂
2u

(n)
i

∂τ2
+ η

∂u
(n)
i

∂νi
+ λu

(n)
i = g

(n)
i on Γ (6)

where g(n)
i is some given function. Henceforth, we shall assume f ≡ 0. Unfortu-

nately, we are also unable to prove a rate of convergence of g (n)
i to zero in non-

rectangular geometry. Instead, we propose a different boundary condition for which
a spectral radius estimate 1−O(h1/4) can be proven for a general class of domains.
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This is the same estimate as that for (6) for rectangular domains which is available
in the literature.

We now give a heuristic derivation of our new boundary condition. Along Γ ,

0 = f = �u =
∂2u

∂ν2
+
∂2u

∂τ2
+ Lu

where L = ∇· τ ∂τ +∇· ν ∂ν is a linear first order differential operator. We shall be
taking η = O(h−3/4) and λ = O(h−1) where h is the discretization parameter and
thus the term containing L will be insignificant. Ignoring it, ( 6) can be approximated
as

∂2u
(n)
i

∂ν2
i

+ η
∂u

(n)
i

∂νi
+ λu

(n)
i = g

(n)
i on Γ. (7)

A natural update for the boundary function g (n)
i is

g
(n+1)
3−i = g

(n)
i − 2η

∂u
(n)
i

∂νi
. (8)

To see this, note that ν1 = −ν2 and

g
(n+1)
3−i =

∂2u
(n+1)
3−i

∂ν2
3−i

+ η
∂u

(n+1)
3−i

∂ν3−i
+ λu

(n+1)
3−i

≡ ∂2u
(n)
i

∂ν2
i

− η∂u
(n)
i

∂νi
+ λu

(n)
i

= g
(n)
i − 2η

∂u
(n)
i

∂νi
.

We next approximate the second normal derivative in (7) by S2
i , leading to the

new boundary condition

(S2
i + ηSi + λ)Tiu

(n)
i = g

(n)
i on Γ.

We assume that
SiTiu

(n)
i ∈ H1/2

00 (Γ ) (9)

so that S2
i Tiu

(n)
i ∈ H−1/2(Γ ). Two examples of Γ where the assumption (9) holds

are one side of a rectangle and an arc of a circle, provided that u (n)
i is sufficiently

smooth. For these two cases, Si can be worked out analytically and it can be seen
that S2

i and ∂2/∂ν2
i differ when acting upon low order modes. Their difference goes

to zero as the order of modes goes to infinity. It is in this sense that S 2
i approximates

the second normal derivative and is the reason why the algorithms employing the two
boundary conditions have similar convergence rates. By writing an equivalent form

∂2

∂ν2
i

+ ηSi + λ+ L
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of the boundary operator (6), we clearly see the two approximations involved in
the proposed boundary operator S 2

i + ηSi + λ: replacement of the second normal
derivative by S2

i and the removal of L.
Define, for i = 1, 2,

−�u(n)
i = 0 onΩi

(S2
i + ηSi + λ)Tiu

(n)
i = g

(n)
i . (10)

The parameters η and λ are positive. The update (8) is still applicable here and can
be written as

g
(n+1)
3−i = g

(n)
i − 2ηSiTiu

(n)
i .

Since Tiu
(n)
i = (S2

i +ηSi+λ)−1g
(n)
i , the update for the boundary function becomes

g
(n+1)
3−i = g

(n)
i − 2ηSi(S2

i + ηSi + λ)−1g
(n)
i .

Eliminate g(n)
2 from the above to obtain g (n+1)

1 = Kg(n−1)
1 where

K =
(
I − 2ηS2(S2

2 + ηS2 + λ)−1
)(
I − 2ηS1(S2

1 + ηS1 + λ)−1
)
. (11)

The discrete iteration is
g
(n+1)
1 = Khg(n)

1 (12)

where Kh denotes a finite element discretization of K. Convergence of this iteration
depends on ρ(Kh). If ρ(Kh) < 1, then g(n)

1 → 0, the exact solution. Since ρ(Kh) ≤
|Kh|,

ρ(Kh) ≤ |I − 2ηS2,h(S2
2,h + ηS2,h + λ)−1| |I − 2ηS1,h(S2

1,h + ηS1,h + λ)−1|

with the matrices on the right-hand side symmetric. The proof of the following the-
orem appears in [11].

Theorem 2. Let λ = O(h−1) and η = O(h−3/4). Then ρ(Kh) ≤ 1−O(h1/4).

The above theorem gives an upper bound of the spectral radius. As before, a lower
bound is much more difficult to establish. The following are some partial results.
Suppose η < O(1). Then

ρ(Kh) =
{

1−O(ηh), λ ≤ O(h−1);
1−O(ηλ−1), λ ≥ O(h−1).

Suppose η > O(h−1) and λ < O(η). Then

ρ(Kh) =
{

1−O(η−1), λ < O(1);
1−O(η−1λh), λ > O(h−2).

We give one MATLAB numerical experiment. Let the domain be the rectangle
[0, 1.6]× [0, 1] and the artificial interface be the line y = x−0.2. Hence the two sub-
domains are trapezoids. Using a simple finite difference scheme, the result is shown
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Fig. 1. Solid line is a plot of 1 − ρ(Kh) versus h for two trapezoidal subdomains while the
dashed line is a plot of 1−O(h1/4).

in Fig. 1. Observe that for larger values of h, the spectral radius is actually better
than the prediction 1−O(h1/4). However, the spectral radius seems to approach the
predicted rate for smaller values of h. For other numerical results, see [ 11].

There are a number of mathematical questions about the new boundary condition
which have not been answered. Although the discrete iteration ( 12) is well defined
and convergent, it remains to show well-posedness at the continuous level for the
boundary condition (10). Also, the geometric meaning of the assumption (9) requires
investigation. While we have not been able to establish a convergence rate for ( 6) on
arbitrary domains, it is hoped that the present analysis gives some new insight to the
convergence of (6).
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