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Summary. We present several coupled finite and boundary element formulations for the
vibro-acoustic simulation of completely immersed bodies such as submarines. All formula-
tions are based on the different use of standard boundary integral equations. In addition to the
well known symmetric coupling we discuss two different approaches which are based on the
weakly singular boundary integral equation only.

1 Introduction

The simulation of the sound radiation of time-harmonic vibrating elastic structures
is of main interest in many applications with the acoustic fluid being air or water.
Relevant applications are the sound radiation of passenger car bodies, where the
acoustic region is bounded, of partially immersed bodies such as ships, where the
acoustic region is a half space, or of completely immersed bodies such as submarines
with a full space acoustic region.

In this paper, we consider coupled finite and boundary element formulations for
a direct simulation of a three-dimensional time-harmonic vibrating structure in a
surrounding fluid [3, 7]. In particular, the time-harmonic vibrating structure in 2 5 is
modeled by the Navier equations in the frequency domain,

—oswu(r) — pAu(z) — (A + p)graddivu(z) = f(z) forz € 25, (1)

where X and p are the Lamé parameters, og is the density of the structure, w is the
frequency, and w is the unknown displacement field. Note that {2 is in general a
bounded, multiple connected domain with an interior boundary I" ;- where Neumann
boundary conditions

t(x) = Adivu(z) n, + 2/16a

u(z) + pn, xcurlu(x) = g(x) forxz e I'nv (2)
s

are considered, and with an exterior boundary I" where transmission conditions are
formulated for the coupling with the surrounding fluid. In particular, in the low fre-
quency regime we use the Laplace equation
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—Ap(x) =0 forz e 2p (3)

to describe the acoustic pressure p in the unbounded domain (2 » surrounding the
structure in (2. Note that p has to satisfy a radiation condition at infinity,

p(z) = O(ﬁ) as |z| — oo.

In addition to the partial differential equations (1) and (3) and the Neumann boundary
conditions (2) we consider the transmission conditions on the interface I" = 2 N
s,

q(x) = 5‘2 p(z) = opw?[u(x) - n,], tx)=—p(x)n, forzecl, (4)

where o is the density of the fluid, and n . is the exterior normal vector with respect
to 2g.

The aim of this paper is to derive and to discuss different coupled finite and
boundary element formulations for the solution of the transmission boundary value
problem (1), (2), (3) and (4). Besides an efficient solution of the direct problem a
main interest in applications is the determination of critical frequencies w which
correspond to eigenvalues of the coupled problem with homogeneous data, see, e.g.,
[1, 2] and the references given therein.

2 Integral Equations and Variational Formulations

The solution of the Laplace equation (3) in the unbounded exterior domain 2 g is
given by the representation formula for = € 2, see, e.g., [5],

1 1 L [ (z—y,n,)
plz)=—— | ——q(y)ds —l——/ip dsy. 5
@ =1 | soatds, + - [ S, @
From (5) we obtain a system of boundary integral equations given as

1
D sI+K -V D
= ? 1 / : (6)
q -D SI-K q
For the structural part we introduce the bilinear forms
3 e — —_
astu) = [ Y opule)em@lds, (uvha, = [ ulz) v
s ;=1 Qs

for u,v € [H'(£25)]* as well as the duality pairing, for t € [H~/2(I"))?,

(t,v)p = /Ft(a:) ~v(2),p dsa.
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The variational formulation of the structural problem (1) and (2) is to find the dis-
placement field u € [H*(£25)]? such that

aS(uav) - st2<U,U>QS - <tav>F = F(U) @)

is satisfied for all v € [H'(£2s)]3, where the linear form of the right hand side is
given by

Fo) = [ 1)o@ e+ [ gla) o) dss.

s

By using the second transmission boundary condition in (4), we can rewrite the vari-
ational formulation (7) as

as(u,v) — 05w (u, V) s + (p,v-n)p = F(v) forallv e [H'(Qs),  (8)

where in addition to u € [H'(£2¢)] also p € H'/?(I") is unknown. By using the
boundary integral equations as given in (6), and by using the first transmission con-
dition in (4), we will derive a second variational equation to link the two unknowns
u and p. Since such an approach is not unique, we will discuss several possible
methodologies.

3 Symmetric Coupling of Finite and Boundary Elements

When inserting the first boundary integral equation as given in (6) into the variational
problem (8), and by using the first transmission condition in (4), i.e.,

p(r) = %p(x) +(Kp)(x) = (Va)(@), a(x) = orw’[u(z) -n,] forz e I

we have to find (u,p) € [H'(2s)]*> x HY/?(I") satisfying
aS(uvv)_st2<uvU>QS_QFW2<V[U'TL]7v'n>F+<(%I+K)pav'n>F =F(v) 9)

forall v € [H!(£25)]3. In addition we consider the weak formulation of the second,
hypersingular, boundary integal equation in (6). Together with the first transmission
condition in (4), this gives

(Dp,7)r + ngQ(%I+ Ku-n),m)r =0 forallme HY*(I").  (10)

From the hypersingular boundary integral equation (10) as well as from the coupled
variational form (9) we conclude that the acoustic pressure p is only unique up to
constants. Hence, to fix the constants we may introduce the modified hypersingular
boundary integral operator via the bilinear form

(Dp,7)p = (Dp,m)p + (p, 1) p(x, 1) forall p,m € HY/?(I).
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Instead of (10) we now consider the modified variational problem
~ 1
(Dp,m)r + ng2<(§1 + K')u-n],7)p =0 forallme HY*(I'), (11)

which implies the related scaling of the pressure by (p, 1) = 0. To summarize,
we have to find (u,p) € [H'(£25)]?> x H'/?(I") from the coupled variational prob-
lem (9) and (11). Since the modified hypersingular boundary integral operator D is
H'/2(I")—elliptic, we obtain from (11) the representation

- 1
p = —QFWQD_1(§I+K/)[U'TZ]7

and therefore the continuous Schur complement problem to find u € [H '(£2s)]?
such that

as(u,v) — w? [gs<u, Vg + or(Tu-nl,v- ’I’L>[‘i| = F(v) (12)
forall v € [H'(£25)]. Note that
TV (%I+K)5*1(%I+K’) CHAVAD) - HYA(D) (1)

is the symmetric and H —*/2(I")-elliptic representation of the Poincaré—Steklov oper-
ator realizing the Neumann to Dirichlet map which is related to the Neumann bound-
ary value problem of the Laplace equation in the unbounded exterior domain {2 . As
a direct consequence of the mapping properties of all involved operators, we can for-
mulate the following result.

Lemma 1. If w? is not an eigenvalue of the eigenvalue problem
as(u,v) = )\[Qs<u,’u>gs + or(T[u-n],v- ’I’L>[‘i| forall v € [H'(25)]3,

then there exists a unique solution of the variational problem (12), and therefore of
the coupled variational problem (9) and (11).

Next we consider a Galerkin discretization of the coupled variational formulation (9)
and (11). Let S} (£2s) C H'(£25) be a conformal finite element space of, e.g., piece-
wise linear and continuous basis functions with respect to some admissible finite
element mesh (2, and let S} (I") be some boundary element ansatz space of, e.g.,
piecewise linear and continuous basis functions which can be defined independently
of S} (£2s). The Galerkin discretization of the coupled variational problem (9) and
(11) results in the linear system

Ks—gstMs—QFWQCTVhC CT(%M}L-FK}L) u i 14
(B0 +K])C b J\p) o) W

orw?

where K5 and Mg are the finite element stiffness and mass matrices, respectively.
Dy, is the Galerkin matrix of the modified hypersingular boundary integral operator
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D. The matrix C describes the basis transformation of a piecewise linear and con-
tinuous vector function w,, to a scalar piecewise linear but discontinuous function
up, -n when considering a polygonal boundary mesh I";,. Note that V}, is the Galerkin
discretization of the single layer potential V' when using piecewise linear but dis-
continuous basis functions, while K and M), are the Galerkin boundary element
matrices of the double layer potential /& and of the identity.

Since the Galerkin discretization D;, of the modified hypersingular boundary
integral operator D is invertible, the Schur complement system of (14) is given by

1 ~_ 4,1
(Ks—w?|osMs+orCTVa+(5Ma+Kn) Dy (GM + K)IC Ju= £. (15)

As in the continuous case, see (12), we conclude unique solvability of the Schur com-
plement system (14), if w? is not an eigenvalue of the algebraic eigenvalue problem

1 ~ .1
Kou = A(gsMs +orCT Vi + (5 My + Kn) Dy (M) + K;)]C)g (16)

which is the discrete counterpart of the eigenvalue problem as considered in Lemma
1. Note that

1 ~ 1
T, = Vi + (§Mh + K3)D;, l(iMhT + K1)

is a symmetric boundary element approximation of the Poincaré—Steklov operator as
defined in (13).

4 Nonsymmetric Finite and Boundary Element Coupling

Instead of the symmetric coupling of finite and boundary elements, the use of the
weakly singular boundary integral equation is very popular in applications in engi-
neering and in industry. This is due to the use of the single layer potential V" and the
double layer potential K only. Hence we will discuss related formulations which also
allow the use of simpler collocation methods for the boundary element discretization.

For the non-sysmmetric coupling we consider two different combinations of the
first boundary integral equation as given in (6), of the first transmission condition as
given in (4), and of the variational formulation (8).

4.1 A Second Kind Boundary Integral Equation Approach

Inserting the first transmission condition of (4) into the first boundary integral equa-
tion in (6) gives the second kind boundary integral equation

1
(§I—K)p: ~Vq=—opw?Vu-n] onT. 17)

Since 11 — K : HY*(I") — H'Y/?(I') is invertible, see, e.g. [6], we obtain
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1
p= —gpw2(§l — K)" YWu-n| = —opw®Tu - n,
where )
T = (51— K\ H Y2y - HY*(I)
is a second representation of the Poincaré—Steklov operator as introduced in (13).
From (8) we obtain the variational formulation: find v € [H 1 (£2g)]? such that

as(u,v) = w205 (u, v) s + or (T[u-n],v-n)r| = F(v)

forall v € [H'(£2s)]3, which corresponds to the variational problem (12). However,
the Galerkin discretization of the variational formulation (8) and of the boundary
integral equation (17) now results in the different linear system

Ks — osw? cr u\ ([
(—Vc ﬁ%m—mx@)(@)' w

Note that the test functions to be used in the Galerkin discretization of the second
kind boundary integral equation (17) are the piecewise linear and continous basis
functions of S} (I") as used for the approximation of the pressure p. Although, to the
best of our knowledge, there is still no rigorous stability analysis available for general
Lipschitz boundaries I', the elimination of p results in the Schur complement system

(KS - w? [QSMS + QFCT(%M}L - Fh)_lvh,c} )u =/ (19)

which is uniquely solvable if w? is not an eigenvalue of the related discrete eigen-
value problem

1— — —
Ksu=(esMs + 0rCT (50 = Kn) "'V

Note that ]
Ty = (§Mh ~Kp) 'V

is a non-symmetric boundary element approximation of the Poincaré-Steklov op-
erator 7" which is based on an approximate solution of the second kind boundary
integral equation (17).

4.2 A First Kind Boundary Integral Equation Approach
Since the single layer potential V : H~'/2(I") — H'Y?(I') is invertible, we obtain

from the first boundary integral equation of (6), and by using the first transmission
boundary condition of (4), the relation

1
q = Vﬁl(—§I+K)P: —Sp = grw?[u-n] onT,
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where )
S = V*l(if —K): H'*(I') - H V(I

is the Steklov—Poincaré operator describing the Dirichlet to Neumann map which is
related to the Laplace equation in the exterior domain. We therefore obtain

p=—orw?S u-n] = —opw’Tu-n), T=8"'= (%I - K)7 v,
which obviously corresponds to the nonsymmetric approach which is based on the
solution of the second kind boundary integral equation (17). Hence, unique solvabil-
ity of the continuous problem follows as above. However, for a finite and boundary
element discretization we consider the coupled system based on the variational for-
mulation (8), the first boundary integral equation in (6), and the first transmission
condition in (4). The Galerkin discretization of the coupled system then results in
the linear system

Ks —osw?Mg  CT u f
—orpw?C A p|l =10 (20)
%Mh - Kp Vi q 0

Since the discrete single layer potential V;, is invertible, after elimination of ¢ we
obtain the reduced system

Kg — osw?Mg cr u f
C LMV (AM, — K “lo) @
orwZ " h Vh (2 h h) p 0

Note that
Ty—1,1
Sh = Mh, Vh (§Mh — Kh)
is a non-symmetric representation of the Steklov—Poincaré operator. For stability
we need to assume an appropriate choice of the boundary element spaces for an
approximation of p and ¢, respectively, see, e.g. [4]. If Sy, is invertible, the Schur
complement system of (21),

(KS - w? [QSMS + QFCTS;flCDu =/
is uniquely solvable, if w? is not an eigenvalue of the related eigenvalue problem

Ksu= )\(QSMS + QFCTS;IC)Q-

5 Conclusions

The symmetric coupling of finite and boundary element methods as described in
Sect. 3 admits a complete error and stability analysis, but requires the use of the hy-
persingular boundary integral operator D, and a Galerkin approach for the discretiza-
tion of the boundary integral equations. In contrast, both nonsymmetric formulations
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as given in Sect. 4 are based on the single and double layer potential operators V" and
K only, and allow the use of a collocation scheme for a boundary element discretiza-
tion.

Challenging problems appear in the construction of efficient and robust precon-
ditioning strategies for the solution of the resulting linear systems, in particular when
considering the Helmholtz equation instead of the Laplace equation when simulat-
ing the sound radiation in the mid frequency regime. The issue of appropriate eigen-
solvers for the determination of critical frequencies is also of interest. For prelimi-
nary and promising results, see [1, 2, 7].
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