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Summary. Poincaré type inequalities play a central role in the analysis of domain decom-
position and multigrid methods for second-order elliptic problems. However, when the co-
efficient varies within a subdomain or within a coarse grid element, then standard condition
number bounds for these methods may be overly pessimistic. In this short note we present new
weighted Poincaré type inequalities for a class of piecewise constant coefficients that lead to
sharper bounds independent of any possible large contrasts in the coefficients.

1 Introduction

Poincaré type inequalities play a central role in the analysis of domain decomposition
(DD) methods for finite element discretisations of elliptic PDEs of the type

−∇ · (α∇u) = f . (1)

In many applications the coefficient α in (1) is discontinuous and varies over sev-
eral orders of magnitude throughout the domain in a possibly very complicated way.
Standard analyses of DD methods for (1) that use classical Poincaré type inequali-
ties will often lead to pessimistic bounds. Two examples are the popular two-level
overlapping Schwarz and FETI. If the subdomain partition can be chosen such that
α is constant (or almost constant) on each subdomain as well as in each element of
the coarse mesh (for two-level methods), then it is possible to prove bounds that are
independent of the coefficient variation (cf. [2, 7, 14]). However, if this is not possi-
ble and the coefficient varies strongly within a subdomain, then the classical bounds
depend on the local variation of the coefficient, which may be overly pessimistic in
many cases. To obtain sharper bounds in some of these cases, it is possible to re-
fine the standard analyses and use Poincaré inequalities on annulus type boundary
layers of each subdomain [5, 8, 10, 12, 15], or weighted Poincaré type inequalities
[4, 9, 13]. See also [1, 3, 6, 11, 16].
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In this short note we want to collect and expand on the results in [ 4, 9] and
present a new class of weighted Poincaré-type inequalities for a rather general class
of piecewise constant coefficients. Due to space restrictions we have to refer the
interested reader to [5, 8, 9, 13], to see where exactly these new inequalities can be
used in the analysis of FETI and two-level Schwarz methods.

2 Weighted Poincaré Inequalities

Let D be a bounded domain in Rd, d = 2, 3. For simplicity we only consider piece-
wise constant coefficient functions α with respect to a non-overlapping partitioning
{Y	 : 
 = 1, . . . , n} of D into open, connected Lipschitz polygons (polyhedra),
i.e. α|Y�

≡ α	 ≡ const. The results generalise straightforwardly to more general
coefficients that vary mildly within each of the regions Y 	.

Definition 1. The region P	1, 	s := (Y	1 ∪Y	2 ∪· · ·∪Y	s)◦ is called a type-m quasi-
monotone path from Y	1 to Y	s , if

(i) for i = 1, . . . , s−1 the subregions Y	i and Y	i+1 share a commonm-dimensional
manifoldXi

(ii) α	1 ≤ α	2 ≤ · · · ≤ α	s .

Definition 2. Let X∗ ⊂ D be a manifold of dimension m, with 0 ≤ m < d. The
coefficient distribution α is called type-m X ∗-quasi-monotone on D, if for all 
 =
1, . . . , n there exists an index k such that X ∗ ⊂ Yk and such that there is a type-m
quasi-monotone path P	, k from Y	 to Yk.

Definition 3. Let Γ ⊂ ∂D. The coefficient distribution α is called type-m Γ -quasi-
monotone on D, if for all 
 = 1, . . . , n there exists a manifold X ∗

	 ⊂ Γ of di-
mension m and an index k such that X ∗

	 ⊂ ∂Yk and such that there is a type-m
quasi-monotone path P	, k from Y	 to Yk.

Note that the above definitions generalize the notion of quasi-monotone coeffi-
cients introduced in [2]. Definition 2 will be used to formulate weighted (discrete)
Poincaré type inequalities, whereas Definition 3 will be used in weighted (discrete)
Friedrichs inequalities. In Fig. 1 we give some examples of coefficient distributions
that satisfy Definition 2.

To formulate our results we define for any u ∈ H 1(D) the average

uX
∗

:=
1
|X∗|

∫
X∗

u ds if m > 0, uX
∗

:= u(X∗) if m = 0,

as well as the weighted norm and seminorm

‖u‖L2(D),α :=
( ∫

D

α |u|2 dx
)1/2

and |u|H1(D),α :=
( ∫

D

α |∇u|2 dx
)1/2

.
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Fig. 1. Examples of quasi-monotone coefficients. The numbering of the regions is according
to the relative size of the coefficients on these regions with the smallest coefficient in region
Y1. Note that the first case is quasi-monotone in the sense of [2], but the other three are not.
The first three examples are type-1. The last example is type-0. The manifold X∗ is shown in
each case, together with a typical path in some of the cases.

Lemma 1 (weighted Poincaré inequality). Let the coefficientα be type-(d−1)X ∗-
quasi-monotone on D with the (d − 1)-dimensional manifold X ∗. For each index

 = 1, . . . , n, let P	, k be the path in Definition 2 with X∗ ⊂ Yk, and let CP	, k > 0
be the best constant in the inequality

‖u− uX∗‖2L2(Y�)
≤ CP	, k diam(D)2 |u|2H1(P�, k) for all u ∈ H1(P	, k). (2)

Then there exists a constant CP ≤
∑n

	=1 C
P
	, k independent of α and diam(D) such

that

‖u− uX
∗
‖2L2(D),α ≤ CP diam(D)2 |u|2H1(D),α for all u ∈ H1(D).

Proof. Let us fix one of the subregions Y	 and suppose without loss of generality
that

∫
X∗ u ds = 0 and that diam(D) = 1. Due to the assumption on α, we have

‖u‖2L2(Y�),α
= α	‖u‖2L2(Y�)

. Combining this identity with inequality (2) and using
that the coefficients are monotonically increasing in the path from Y 	 to Yk, we obtain

‖u‖2L2(Y�),α
≤ CP	, k α	 |u|2H1(P�, k) ≤ CP	, k |u|2H1(P�, k),α ≤ CP	, k |u|2H1(D),α .

The proof is completed by adding up the above estimates for 
 = 1, . . . , n.

Remark 1. Obviously, inequality (2) follows from the standard Poincaré type in-
equality ‖u − uX

∗‖2L2(P�, k) ≤ C |u|H1(P�, k) for all u ∈ H1(P	, k), with some
constant C depending on P	, k and on X∗. However, this may lead to a sub-optimal
constant. In general, the constants CP

	, k depend on the choice of the manifold X ∗,
as well as on the number, shape, and size of the subregions Y 	. In Sect. 3, we give a
bound of CP	, k in terms of local Poincaré constants on the individual subregions Y 	
to make this dependency more explicit.

On the other hand, if X ∗ is a manifold of dimension less than d− 1 (i.e. an edge
or a point), inequality (2) does not hold for all functions u ∈ H 1(D). However, there
is a discrete analogue for finite element functions which holds under some geometric
assumptions on the subregions Y	, cf. [14, Sect. 4.6].
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Let {Th(D)} be a family of quasi-uniform, simplicial triangulations of D with
mesh width h. By V h(D) we denote the space of continuous piecewise linear func-
tions with respect to the elements of Th(D). Note that we do not prescribe any bound-
ary conditions. We further assume that the fine mesh Th(D) resolves the interfaces
between the subregions Y	.
Assumption 1 (cf. [14, Assumption 4.3]) There exists a parameter η with h ≤ η ≤
diam(D) such that each subregion Y	 is the union of a few simplices of diameter η,
and the resulting coarse mesh is globally conforming on all of D.

Before stating the next lemma, we define the function

σδ(x) :=
{

(1 + log(x)) for δ = 2,
x for δ = 3. (3)

Lemma 2 (weighted discrete Poincaré inequality). Let Assumption 1 hold and let
α be type-mX∗-quasi-monotone onD with the manifoldX ∗ having dimensionm <
d− 1. If m = 1, assume furthermore that X∗ is an edge of the coarse triangulation
in Assumption 1. For each 
 = 1, . . . , n, let P	, k be the path in Definition 2 with
X∗ ⊂ Yk and let CP,m	, k > 0 be the best constant independent of h such that

‖u−uX∗‖2L2(Y�)
≤ CP,m	, k σd−m

(
η
h

)
diam(D)2 |u|2H1(P�, k) for all u ∈ V h(P	, k).

(4)
Then, there exists a constant CP,m ≤

∑n
	=1 C

P,m
	, k , independent of h, of α, and of

diam(D) such that

‖u−uX∗‖2L2(D),α ≤ CP,m σd−m
(
η
h

)
diam(D)2 |u|2H1(D),α for all u ∈ V h(D).

Proof. The proof is analogous to that of Lemma 1, but uses (4) instead of (2).

We remark that the existence of the constants CP,m
	, k fulfilling inequality (4) will

follow from the results summarized in [14, Sect. 4.6] and from our investigation in
Sect. 3. For simplicity, let us also define σ1 ≡ 1 and CP, d−1 := CP .

We would like to mention that similar inequalities than those in Lemmas 1 and 2
can also be proved, if u vanishes on part of the boundary ofD. Here, we just display
the case m = d− 1. The generalisation to m < d− 1 is straightforward and follows
Lemma 2.

Lemma 3 (weighted Friedrichs inequality). Let Γ ⊂ ∂D and let α be type-(d−1)
Γ -quasi-monotone on D (according to Definition 3). Then there exists a constant
CF = CF, d−1 independent of α and of diam(D) such that

‖u‖2L2(D),α ≤ CF diam(D)2 |u|2H1(D),α for all u ∈ H1(D), u|Γ = 0.

3 Explicit Dependence on Geometrical Parameters

In this section we will study the dependence of the constants C P,m
	,k (and conse-

quently CP,m) in the above lemmas on the choice of X ∗ and on the number, size
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and shape of the regions Y	 (in particular the ratio diam(D)/η). In [9, §3] the de-
pendence on the geometry of the subregions is made more explicit. The lemmas
presented there are in fact special cases of Lemmas 1 and 2 here.

First, we show that bounds for the constantsCP,m
	, k can be obtained from inequal-

ities on the individual subregions Y	. Secondly, we will look at a series of examples
in two dimensions. For further 3D examples see [9].

Lemma 4. Let α be type-mX∗-quasi-monotone on D with 0 ≤ m ≤ d− 1, and let
P	1, 	s be any of the paths in Definition 2. Ifm < d−1, let Assumption 1 hold. Ifm =
1 and d = 3, assume additionally thatX ∗ is an edge of the coarse triangulation. For
each i = 1, . . . , s, let CP,m	i

be the best constant, such that

‖u− uX‖2L2(Y�i
) ≤ CP,m	i

σd−m
(
η
h

)
diam(Y	i)

2 |u|2H1(Y�i
) for all u ∈ V h(Y	i),

(5)
where X ⊂ Y	i is any of the manifolds Xi−1, Xi or X∗ in Definition 2 (as appro-
priate), cf. [14, Sect. 4.6]. Then

CP,m	1, 	s
≤ 4

{ s∑
i=1

meas(Y	1)
meas(Y	i)

diam(Y	i)2

diam(D)2
CP,m	i

}
.

If m = d− 1 we can extend the result to the whole of H 1.

Proof. We give the proof for the casem = d−1. The other cases are analogous. For
convenience let Xs := X∗. Then, telescoping yields

‖u− uX∗‖L2(Y�1) ≤ ‖u− uX1‖L2(Y�1) +
s∑
i=2

√
meas(Y	1)

∣∣uXi−1 − uXi
∣∣.

Due to (5), ‖u− uX1‖L2(Y�1 ) ≤
√
CP,m	1

diam(Y	1) |u|H1(Y�1 ), and for each i,

∣∣uXi−1 − uXi
∣∣2 ≤ 2

meas(Y	i)

(
‖uXi−1 − u‖2L2(Y�i

) + ‖u− uXi‖2L2(Y�i
)

)
≤ 4

meas(Y	i)
CP,m	i

diam(Y	i)
2 |u|2H1(Y�i

) .

An application of Cauchy’s inequality (in Rs) yields the final result.

Let us look at some examples now. Firstly, if Assumption 1 holds with constant
η � diam(D) (e. g. in Fig. 1a), then n = O(1) and each path P	,k in Definition 2
containsO(1) subregions. If we chooseX ∗ to be a vertex, edge or face of the coarse
triangulation in Assumption 1, then by standard arguments C P,m

	 = O(1) in (5)
for all 
 = 1, . . . , n. Hence, it follows from Lemma 4 that the constants CP,m in
Lemmas 1–2 are all O(1).

Before we look to more complicated examples, which involve in particular long,
thin regions, let us first derive two auxiliary results.
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Fig. 2. More examples (with α1 
 α2): The first two examples are quasi-monotone of type-
1 and type-0, respectively. X∗ is shown in each case. The examples in (c) and (d) are not
quasi-monotone.

(i) The middle region Y3 in Fig. 1b is long and thin if η � diam(Y3). With X∗ as
given in the figure, one can show that (5) holds with CP, 13 = O(1), independent
of η and diam(Y3). Note that diam(X∗) � diam(Y3).

(ii) The regionY8 in Fig. 1c has essentially the same shape, but hereX ∗ has diameter
η � diam(Y8). Nevertheless, one can show that (5) holds with X = X∗ and
CP, 18 = O(1), independent of η and diam(Y8). (This result can be obtained by
sub-dividingY8 into small quadrilaterals of sidelength η and applying Lemma 4).

In Figs. 1 and 2, H denotes the sidelength of D (thus, H � diam(D)). We view η
(if displayed) as a varying parameter≤ H , with the other parameters fixed.
Fig. 1b. As just discussed,CP, 13,3 = CP, 13 = O(1). Similarly,CP, 12,2 = CP, 12 = O(1).
To obtain CP, 11, 3 = O(1) we use ‖u− uX∗‖2L2(Y1) ≤ ‖u− uX

∗‖2L2(P1,3) and apply a
standard Poincaré inequality (rather than resorting to Lemma 4 which would yield a
pessimistic bound). Hence, Lemma 1 holds with CP, 1 = O(1).
Fig. 1c. Despite the fact that CP, 11 = O(1) and CP, 18 = O(1), the constant CP, 11, 8 is
not O(1): Since diam(Y1) ∼ H , Lemma 4 yields

CP, 11, 8 � H2

H2

H2

H2
+
H2

H η

H2

H2
= O

(H
η

)
.

We easily convince ourselves that this is the worst constantCP,1
	,k , for all 
 = 1, . . . , 9

(e. g., CP, 13, 9 = O(1)), and so we obtain CP, 1 = O(Hη ).
Fig. 1d. Here the coefficient is only type-0 quasi-monotone and so we cannot apply
Lemma 1, but by applying Lemma 4 we find that CP, 07,8 = O(1) and all the other
constants are no worse. So in contrast to Case (c), we can show that the constant
CP, 0 in Lemma 2 is O(1) in this case. The crucial difference is not that α is type-0
here, but that diam(Y8) = O(H) and diam(Y9) = O(H).

The examples in Fig. 2 are further, typical test cases used in the literature.
Fig. 2a. To obtain a sharp bound for C P, 1, it is better here to treat all the regions
where α = α1 as one single region Y1, slightly modifying the proof of Lemma 1.
Then CP, 11,2 = O(1) (standard Poincaré onD). Due to a tricky overlapping argument

that can be found in the Appendix of [8], CP, 12,2 = O(1). Thus, CP, 1 = O(1). Note
that this is only possible if α takes the same values on all the inclusions. If there are
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p distinct values in the inclusions, the constant CP, 1 depends (linearly) on p. This
should be compared with one of the main results in [4], where a similar Poincaré
inequality is proved with a constant depending on the number of inclusions.
Fig. 2b. For each region Y	 we have CP, 0	 = CP, 0� = O(1). For a moment, let us
restrict on the regions where the coefficient is α1 and group them into T := H

2 η
concentric layers starting from the two centre squares touching X ∗ where α = α1.
Obviously, for t = 1, . . . , T , layer t contains 2t − 2 regions where α = α1. Each
region in layer t can be connected to one of the two centre squares by a type-0 quasi-
monotone path of length t. By Lemma 4, CP, 0	, k ≤ 4

∑t
j=1

η2

H2 C
P, 0
� = 4 t η

2

H2 C
P, 0
�

for all the regions Y	 in layer t where α = α1. The same bound holds for the regions
where α = α2. Summing up these bounds over all regions and all layers, we obtain

CP, 0 ≤ 2
T∑
t=1

(2t− 2) 4 t
η2

H2
CP, 0� = 16

η2

H2

T 3 − T
3

= O
(H
η

)
.

Equivalently, as there are n× = O
(
H
η

)2
crosspoints in this example, we have shown

that CP, 0 = O(√n×). An enhanced bound of O
(
(1 + log(H/η))2

)
for CP,0 in

this example can be obtained using a multilevel argument, and will be proved in an
upcoming paper.
Fig. 2c. α is not quasi-monotone in this case, and indeed Lemmas 1–3 do not hold.
For example, if we choose X ∗ as shown, then it suffices to choose u to be the con-
tinuous function that is equal to 2(x1 − 1

4 ) for 1
4 ≤ x1 ≤ 3

4 and constant otherwise,
to obtain a counter example in V h(D) ⊂ H1(D) that satisfies uX

∗
= 0. We have

‖u‖2L2(D),α = α1
6 + α2

4 and |u|2H1(D),α = 2α1, and so the constantCP,1 in Lemma 1
blows up with the contrast α2

α1
. It is impossible to findX∗ such that Lemma 2 holds.

Fig. 2d. Again α is not quasi-monotone and Lemmas 1–3 do not hold on all of the
domain D. However, by choosing suitable (energy-minimising) coarse space basis
functions in two-level Schwarz methods (cf. [5, 12, 15]), it often suffices to be able
to apply Lemmas 1–3 on D′ := Y1 ∪ Y2 ∪ Y3. Since α is type-1 quasi-monotone on
D′, e.g. Lemma 1 holds for u ∈ H1(D′) and it is easy to verify that CP,1 = O(1).
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