
A Parallel Scalable PETSc-Based Jacobi-Davidson
Polynomial Eigensolver with Application in Quantum
Dot Simulation

Zih-Hao Wei1, Feng-Nan Hwang1, Tsung-Ming Huang2, and Weichung Wang3

1 Department of Mathematics, National Central University, Jhongli 320, Taiwan,
socrates.wei@gmail.com; hwangf@math.ncu.edu.tw

2 Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan,
min@math.ntnu.edu.tw

3 Department of Mathematics, National Taiwan University, Taipei 106, Taiwan,
wwang@math.ntu.edu.tw

Summary. The Jacobi-Davidson (JD) algorithm recently has gained popularity for finding a
few selected interior eigenvalues of large sparse polynomial eigenvalue problems, which com-
monly appear in many computational science and engineering PDE based applications. As
other inner–outer algorithms like Newton type method, the bottleneck of the JD algorithm is to
solve approximately the inner correction equation. In the previous work, [Hwang, Wei, Huang,
and Wang, A Parallel Additive Schwarz Preconditioned Jacobi-Davidson (ASPJD) Algorithm
for Polynomial Eigenvalue Problems in Quantum Dot (QD) Simulation, Journal of Computa-
tional Physics (2010)], the authors proposed a parallel restricted additive Schwarz precondi-
tioner in conjunction with a parallel Krylov subspace method to accelerate the convergence
of the JD algorithm. Based on the previous computational experiences on the algorithmic pa-
rameter tuning for the ASPJD algorithm, we further investigate the parallel performance of a
PETSc based ASPJD eigensolver on the Blue Gene/P, and a QD quintic eigenvalue problem
is used as an example to demonstrate its scalability by showing the excellent strong scaling up
to 2,048 cores.

1 Introduction

Many applications in computational science and engineering modeled by partial dif-
ferential equations (PDEs) requires fast, accurate numerical solutions to the large-
scale polynomial eigenvalue problems (EVPs), e.g., generalized EVPs in the linear
stability analysis of incompressible flows and magnetohydrodynamics [4, 12, 13],
quadratic EVPs in the vibration analysis of a fast train or the acoustic problem with
damping [3, 5], and cubic or quintic EVPs in the estimate of discrete energy states
and wave functions of the semiconductor quantum dot with non-parabolic band struc-
ture [9, 10].

The Jacobi-Davidson (JD) algorithm originally proposed by Sleijpen and Van der
Vorst for linear EVPs, now has gained popularity for solving polynomial EVPs due

158 Z.-H. Wei et al.

to several advantages. For examples, without recasting the polynomial EVPs as an
enlarged linearized EVPs, one only needs to deal with the problem as the same size of
the original one and the interior eigenvalues are targeted without using computational
expensive shift-and-invert techniques. Moreover, the JD algorithm is parallelizable,
hence it is suitable for large-scale eigenvalue computations.

The JD algorithm belongs to a class of subspace methods, which consists of two
key steps: one first enlarges a subspace or a so-called search space by adding a new
basis vector and then extract an approximate eigenpair from the search space through
the Rayleigh-Ritz procedure. To obtain a new basis vector for the search space, at
each JD iteration, one needs to solve approximately a large sparse linear system of
equations, which is known as the correction equation, by an iterative method. In
[8] the authors proposed a new algorithm, namely the additive Schwarz precondi-
tioned Jacobi-Davidson algorithm (ASPJD) that imports an idea from the area of
parallel Schwarz-Krylov solver to enhance the parallel scalability of the JD algo-
rithms. The Schwarz methods [14] have been widely used and is well-understood
for solving a variety of linear systems arising from the discretization of PDEs and is
applied to nonlinear systems as a linear preconditioner for the Jacobian system in the
Newton-Krylov-Schwarz algorithm [2] or as a nonlinear preconditioner in the addi-
tive Schwarz preconditioned inexact Newton algorithm [7]. On the other hand, how-
ever only a few studies are available in the literature for solving eigenvalue problems
using Schwarz methods, e.g., Schwarz methods employed as the action of the spec-
tral transformation in the Arnoldi methods for generalized EVPs [13] or as a precon-
ditioner in the locally optimal block preconditioned conjugate gradient method [11].

In this paper, we continue the previous work investigating how the ASPJD al-
gorithm performs on a parallel machine with a large number of processors, e.g., the
Blue Gene/P. One of our target applications is a quintic polynomial EVPs arising
from the semiconductor quantum dot simulation [7].

2 A Description of the ASPJD Algorithm

In this section, we briefly describe the ASPJD algorithm for solving polynomial
eigenvalue problems of degree τ , which take the form of

A(λ)x =
τ∑
i=0

λiAix = 0, (1)

where Ai ∈ Rn×n are the large sparse matrices arising from some discretization
of certain PDEs, λ ∈ C is an eigenvalue and x ∈ Cn is the corresponding eigen-
vector. The detailed algorithm in conjunction with other techniques, such as locking
and restarting can be found in [8]. Let V be the current search space. Assume that
(λ, u) is current the approximate eigenpair, which is not close enough to the exact
one, (λ∗, u∗). Then the next eigenpair (λnew , unew) can be obtained through the
following two steps:

ASPJD on BG/P 159

Step 1 Update the search space V = [V, v] by solving the correction equation.(
I − pu∗

u∗p

)
A(λ)(I − uu∗)t = −r

approximately for t ⊥ u by a Krylov subspace method with a preconditioner
B−1
d defined as

Bd =
(
I − pu∗

u∗p

)
B(I − uu∗) ≈

(
I − pu∗

u∗p

)
A(λ)(I − uu∗)

Here r = A(λ) and p = A′(λ)u, whereA′(θ) =
τ∑
i=1

iθi−1Ai. Then t is orthog-

onalized against V , and v is defined as v = t/‖t‖2.
Step 2 Perform the Rayleigh-Ritz procedure to extract (λnew , unew) from the
search space V by solving the small projected PEP, (V TA(θ)V)s = 0. Then set
λnew = θ and compute unew = V s.

In practice, one does not explicitly form Bd to perform the preconditioning op-
eration, z = B−1

d y with z ⊥ u for a given y, as it can be done equivalently by
computing

z = B−1y − ηB−1p, with η =
u∗B−1y

u∗B−1p

Note that the preconditioning operation B−1p and inner product u∗B−1p need to
be computed only once for solving each correction equation and there is no need to
re-compute them in the Krylov subspace iteration. Furthermore, in the ASPJD algo-
rithm, the construction of the preconditioner B−1 is based on an additive Schwarz
framework defined as follows.

Let S = {1, 2, ..., n} be an index set and let each integer corresponds to one
component of the eigenvector. Let S1, S2, ..., SN be an non-overlapping partition of
S, i.e.

∪Ni=1Si = S and Si ∩ Sj = ∅ i �= j

To obtain an overlapping partition of S, we extend each S i to a larger subset Sδi
with the size of ni, i.e. Si ⊂ Sδi . Here δ is a positive integer indicating the degree
of overlap and in general

∑N
i=1 ni ≥ n. Using the overlapping partitions of S we

define a subspace of Rn, V δi as

V δi = {v|v = (v1, ..., vn)T ∈ Cn, vk = 0 if k /∈ Sδi },

and the corresponding restriction operators,R δ
i , which transfers data from Cn to V δi .

Then, the interpolation operator (Rδ
i)
T

can be defined as the transpose of Rδ
i . Using

the restriction operator, we define the one-level restricted additive Schwarz (RAS(δ))
preconditioner with the degree of overlapping δ as

B−1 =
Ns∑
i=1

(R0
i)
T
B−1
i Rδi ,

160 Z.-H. Wei et al.

where B−1
i is the subspace inverse of Bi and Bi = RδiA(λ)(Rδi)

T
. Note that the

block Jacobi preconditioner can be considered as a special case of the RAS precon-
ditioner by setting the level of overlap equal to 0.

In the second step, we compute the eigenpair of the projected eigenvalue prob-
lem, (V TA(θ)V)s = 0, by solving the corresponding linearized projected eigen-
value problem,

MAz = θMBz, (2)

where

MA =

⎡⎢⎢⎢⎢⎢⎣
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
M0 M1 M2 . . . Mτ−1

⎤⎥⎥⎥⎥⎥⎦ ,

MB =

⎡⎢⎢⎢⎢⎢⎣
I 0 0 . . . 0
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . −Mτ

⎤⎥⎥⎥⎥⎥⎦ , z =

⎡⎢⎢⎢⎢⎢⎣
s
θs
θ2s

...
θτ−1s

⎤⎥⎥⎥⎥⎥⎦ .
Here Mi = V TAiV . Note that the dimension of V TA(θ)V is usually small and not
larger than a user defined restarting number.

3 A PETSc-Based ASPJD Polynomial Eigensolver

The ASPJD algorithm was implemented using two powerful scientific software li-
braries, namely the PETSc [1] and the SLEPc [6]. As shown in Fig. 1, the design of
PETSc adopts the principle of software layering. As an application code of PETSc,
the major component in our ASPJD polynomial eigensolver, the JD object, is built on
top of the KSP, a Linear Equation Solver. All PETSc libraries are based on Message
Passing Interface (MPI) and two modules of linear algebra libraries: Basic Linear
Algebra Subproblems (BLAS) and Linear Algebra Packages (LAPACK) library. The
vector (Vec) and matrix (Mat) are two basic objects in PETSc. The eigenvectorx and
other working vectors are created as parallel vectors in the Vec object. The column
vectors of V are stored as an array of parallel vectors. The coefficient matrices A i

and the matrix A(θ) are created in a parallel sparse matrix format. We do explicitly
formA(θ) using parallel matrix–matrix addition and it is used in the construction of
a RAS type preconditioner.

The fully parallel correction equation solve as described in Step 1 is the kernel
of the JD algorithm. The ASPJD eigensolver employs a Krylov subspace method,
such as GMRES or CG, which is provided by PETSc, in conjunction with the pre-
conditioner,B−1

d , where the RAS preconditionerB−1 is set to be a default one. For

ASPJD on BG/P 161

SLEPcPETSc

JD Object

MPI LAPACK BLAS

Linear Solver
PC+KSP

Eigenvalue Solver
EPS

Spectral Transform
ST

Mat Vec DA AO IS

Fig. 1. The organization of PETSc, SLEPc, and the ASPJD eigensolver.

simplicity, in our current implementation both of the construction and the application
of RAS are done internally by PETSc.

On each processor, the sequential QZ routine, called ZGGEVX in LAPACK, is
employed to redundantly solve the same linearized projected eigenvalue problem,
MAz = θMBz, through an interface provided by SLEPc [6]. Here, the matricesMA

and MB , as well as Mi, are stored in the sequential dense matrix format and their
sizes increase as ASPJD iterates.

4 Numerical Results

To demonstrate the scalability of our newly developed ASPJD eigensolver, we con-
sider a quintic QD eigenvalue problem as a test case. The eigenvalue problem is
derived from the second order finite volume discretization of the time-independent
Schrödinger equation with non-parabolic effective mass, which is used to model a
pyramidal InAs dot embedded in a cuboid GaAs matrix. The size of the resulting
quintic QD eigenvalue problem is about 32 millions.

The numerical experiment was performed on the Blue Gene/P and all compu-
tation were done in double precision complex arithmetic. We claim that the JD it-
erations converge to an eigenpair if the absolute or the relative residuals ‖A(λ)x‖
is less than 10−10. Vini = (1, 1, . . . , 1)T is normalized and set to be in the initial
search space. We report the numerical results obtained by using the ASPJD algo-

162 Z.-H. Wei et al.

rithm, where the correction equation is solved by right 20 (or 40) steps RAS(0) pre-
conditioned GMRES incorporate with the ILU(0) as a subdomain solver for finding
the smallest positive eigenvalue.

128 256 512 1024 2048
0

5

10

15

20

25

30

np

JD
 it

er
at

io
ns

GMRES(20)

GMRES(40)

Fig. 2. The number of JD iterations with respect to np for the case of GMRES(20) and GM-
RES(40) as the correction equation solver.

Figure 2 shows the number of JD iterations of the ASPJD eigensolver with re-
spect to the number of processor np, ranging from np = 128 to np = 2,048. We
observe that except for the case of np = 128, the ASPJD eigensolver is quite algo-
rithmically scalable, i.e., while the number of inner correction equation iterations is
kept constant, the number of outer JD iterations remains almost the same with 26 and
15 JD iterations required to achieve convergence for the cases of GMRES(20) and
GMRES(40), respectively. We may conclude that for this particular case, the number
of JD iterations only depends on the number of GMRES iterations to be employed. A
similar observation is made in [8] for the same test case but with a small size (about
1.5 M) and solved by the smaller number of processors (about np = 320).

It should be noted that the QD eigenvalue problem we consider has a special
structure such that the eigenvectors corresponding to the eigenvalues of interest are
localized to the dot. That is, the components of the eigenvector corresponding to
the matrix (outside of the QD) are mostly zero. In our simulations, the ratio of the
cuboid matrix to the pyramidal dot is about 35 : 1 in the computational domain. Con-
sequently, that is why we are able to decouple the original pyramidal QD eigenvalue
problem problem into many subproblems using RAS(0) without a penalty in terms
of an increased number of the JD iterations.

Figure 3 exhibits a very good strong scaling result for our ASPJD eigensolver
for up to 2,048 processors. Note that by the definition, strong scaling means the
execution time decreases in inverse proportion to the number of processors, provided
that the problem size is fixed. In the ideal case, the slope of the curve is expected
to be −1. The parallel efficiency for the case of GMRES(40) is about 80% based
on the timing result obtained by using np = 256. Using a better grid partitioning

ASPJD on BG/P 163

and taking the design of the network topology of the BG/P into account to reduce
the communication cost might further improve the parallel scalability of the ASPJD
eigensolver.

10
2

10
3

10
410

1

10
2

10
3

np

T
im

e

GMRES(40)

GMRES(20)

Ideal scaling

Fig. 3. Strong scalability of ASPJD on BG/P.

Acknowledgement. The authors are grateful to the BG/P computer sources provided by IBM
during the workshop on computational science: IBM research and BG/P held at National Tai-
wan University during summer 2009. This work is partially supported by the National Science
Council, the Taida Institute of Mathematical Sciences, and the National Center for Theoretical
Sciences in Taiwan.

References

1. S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F.
Smith, and H. Zhang. PETSc webpage, 2010. http://www.mcs.anl.gov/petsc.

2. X.-C. Cai, W.D. Gropp, D.E. Keyes, R.G. Melvin, and D.P. Young. Parallel Newton-
Krylov-Schwarz algorithms for the transonic full potential equation. SIAM J. Sci. Com-
put., 19(1):246–265, 1998.

3. K.-W.E. Chu, T.-M. Hwang, W.-W. Lin, and C.-T. Wu. Vibration of fast trains, palin-
dromic eigenvalue problems and structure-preserving doubling algorithms. J. Comput.
Appl. Math., 219:237–252, 2008.

4. K. Cliffe, H. Winters, and T. Garratt. Is the steady viscous incompressible two-dimen-
sional flow over a backward-facing step at Re= 800 stable? Int. J. Numer. Methods Fluids,
17:501–541, 1993.

5. M.B. Van Gijzen. The parallel computation of the smallest eigenpair of an acoustic prob-
lem with damping. Int. J. Numer. Methods Eng., 45:765–777, 1999.

6. V. Hernandez, J.E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Softw., 31:351–362, 2005.

164 Z.-H. Wei et al.

7. F.-N. Hwang and X.-C. Cai. A parallel nonlinear additive Schwarz preconditioned
inexact Newton algorithm for incompressible Navier-Stokes equations. J. Comput.
Phys., 204:666–691, 2005. URL http://www.sciencedirect.com/science/
article/B6WHY-4DVW0FD-3/2/17056653526b99d086bd799b21da26e4.

8. F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel additive Schwarz pre-
conditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum
dot simulation. J. Comput. Phys., 229:2932–2947, 2010.

9. T.-M. Hwang, W.-W. Lin, J.-L. Liu, and W. Wang. Jacobi-Davidson methods for
cubic eigenvalue problems. Numer. Linear Algebra Appl., 12:605–624, 2005. URL
http:// dx.doi.org/10.1002/nla.423.

10. T.M. Hwang, W.C. Wang, and W. Wang. Numerical schemes for three-dimensional
irregular shape quantum dots over curvilinear coordinate systems. J. Comput. Phys.,
226(1):754–773, 2007.

11. A.V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method. SIAM J. Sci. Comput., 23:517–541, 2001.

12. M. Nool and A. van der Ploeg. A parallel Jacobi-Davidson-type method for solving
large generalized eigenvalue problems in magnetohydrodynamics. SIAM J. Sci. Comput.,
22:95–112, 2000.

13. R.P. Pawlowski, A.G. Salinger, J.N. Shadid, and T.J. Mountziaris. Bifurcation and sta-
bility analysis of laminar isothermal counterflowing jets. J. Fluid Mech., 551:117–139,
2006.

14. B.F. Smith, P.E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cam-
bridge, 1996.

http://www.sciencedirect.com/science/
article/B6WHY-4DVW0FD-3/2/17056653 526b99d086bd799b21da26e4
http://
dx.doi.org/10.1002/nla.423

