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Summary. In this paper, we construct an auxiliary space preconditioner for Maxwell’s equa-
tions with interface, and generalize the HX preconditioner developed in [9] to the problem
with strongly discontinuous coefficients. For the H(curl) interface problem, we show that
the condition number of the HX preconditioned system is uniformly bounded with respect to
the coefficients and meshsize.
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1 Introduction

The space H0(curl) consists of square integrable vector fields with square integrable
curl whose tangential component vanishes on ∂Ω. In this paper, we try to develop
robust and efficient preconditioners for the H(curl) interface problem:

find u ∈ H0(curl) : (μcurl u, curl v) + (σu,v) = (f ,v), ∀v ∈ H0(curl). (1)

Here, f ∈ L2(Ω) is a vector field and the coefficients μ(x) and σ(x) are assumed
to be uniformly positive but may have large variations in a simply connected open
polyhedral domainΩ ⊂ R3.

This equation arises naturally from many engineering and physical applications
based on Maxwell’s equations. In some applications (see [12, 16] for example), the
coefficients in (1) satisfy that μ(x)/σ(x) = c is the speed of light. In this case,
Eq. (1) can be reduced to (2) by a simple scaling:

find u ∈ H0(curl) : (ωcurl u, curl v) + τ(ωu,v) = (f ,v), ∀v ∈ H0(curl),
(2)

where τ ∈ (0, 1) is a constant, and ω > 0 is piecewise constant but may possibly
have large jump across the interfaces.

The finite element discretization of (2) reads:
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find uh ∈ Vh : (ωcurl uh, curl vh) + τ(ωuh,vh) = (f ,vh), ∀vh ∈ Vh, (3)

where Vh ⊂H0(curl) is a conforming finite element space, e.g. Nedéléc elements.
It gives rise to the following linear system:

Ax = F, (4)

where A = (aij) is defined by aij =
∫
Ω
ωcurl bj · curl bi + τωbj · bidx

for any basis functions bi,bj ∈ Vh. It is well-known that the operator curl has
a large kernel, which should be taken into account in the development of efficient
solvers. This kernel causes most existing AMG solvers for Poisson equations to fail;
see [23] for a theoretical explanation. In order to deal with this issue, most work
has been done for developing efficient solvers for ( 4) with constant coefficients; see
[2, 8, 11, 15, 18, 19].

Recently, Hiptmair and Xu [9] proposed an innovative approach for solving
H(curl) systems, known as the HX-preconditioner. It relies on a regular decom-
position of H(curl) vector fields (see Sect. 2) and the framework of the auxiliary
space method (cf. [22]). A related method, which is based on the compatible dis-
cretization framework, was introduced in [4]. Although the analysis in [9] is only
for constant coefficients case, extensive numerical experiments (cf. [ 13, 14]) demon-
strate that this preconditioner is also efficient and robust for general coefficients. It is
the purpose of this paper to give an theoretical justification of the robustness of the
HX-preconditioner for (3).

The remainder of this paper is organized as follows. In Sect. 2, we discuss the
regular decompositions at the continuous level. In particular, we prove the regular
decomposition in a weighted norm. Then in Sect. 3, we adapt the decomposition into
a discrete form, develop the HX preconditioner, and prove its robustness.

2 Regular Decomposition

The theoretical foundation in the development of the HX preconditioner is the fol-
lowing theorem, which originates from [3, 7] for Maxwell’s equations.

Theorem 1 ([10, 17]). For any u ∈ H0(curl) there exist Φ ∈ H1
0(Ω) and p ∈

H1
0 (Ω) such that u = Φ +∇p, which satisfy the following stability estimates:

‖Φ‖1,Ω � ‖curl u‖0,Ω, and ‖∇p‖0,Ω � ‖u‖H(curl).

This theorem states that roughly speaking, the gap between H 1
0(Ω) and H0(curl)

can be bridged by contributions from the kernel of curl.
In some circumstances, the H(curl) systems are imposed with mixed boundary

conditions. To deal with this situation, we consider the regular decomposition for the
vector fields in the Hilbert space

HΓ (curl) := {u ∈ H(curl) : u× n|Γ = 0, for Γ ⊂ ∂Ω} ,

where Γ �= ∅ is the Dirichlet boundary. We have a similar regular decomposition for
u ∈ HΓ (curl) as follows:
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Theorem 2. For any u ∈ HΓ (curl) there exist Φ ∈ H1
Γ (Ω) and p ∈ H1

Γ (Ω) such
that

u = Φ +∇p.
This decomposition satisfies

‖Φ‖1,Ω � ‖curl u‖0,Ω, and ‖∇p‖0,Ω � ‖u‖H(curl).

Proof. We need to take special care of the boundary conditions. Without loss of
generality, we assume that Γ is simply connected (otherwise, we just treat different
connected components similarly). Let Ω̃ be a ball such that Ω ⊂⊂ Ω̃, and Ω̃ =
Ω∪OΓ ∪O whereOΓ is the subdomain with ∂OΓ ∩∂Ω = Γ, andO = Ω̃\(Ω∪OΓ )
(see Fig. 1). We extend u to ū ∈ H0(curl, Ω̃) defined by ū|Ω := u, ū|OΓ := 0. On
the subdomain O, we define ū as the H(curl) extension of u such that ū|∂Ω\Γ =
u|∂Ω\Γ and 0 on the remaining boundary of O. We refer to [ 1] for the existence of
such an extension. The remainder of the proof is almost identical to that of Theorem

Ω Γ OΓO

Fig. 1. Extension of u ∈ HΓ (curl, Ω) to ū ∈ H0(curl, eΩ).

1 (see [17] for example). We omit the details.

Remark 1. For some other geometric structure of Γ, Theorem 2 still holds, for exam-
ple if Γ is a closed surface, or a “screen” (see [6, 16]).

In order to deal with the interface problem (2), we consider the regular decompo-
sition for H(curl) in the setting of the weighted norms, which are the natural norm
to deal with the interface problems. More precisely, we denote

‖v‖20,ω =
∫
Ω

ω|v|2dx, |v|21,ω =
∫
Ω

ω|∇v|2dx and ‖v‖21,ω = ‖v‖20,ω + |v|21,ω.

For simplicity, let Ω = Ω1 ∪ Ω2, where in Ω1 and Ω2 the equation has different
constant coefficients ω1, ω2, respectively (see Fig. 2), with ω1 ≥ ω2 > 0. The main
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Ω1 Ω2

Γ12

ω1 ω2

Fig. 2. Two domains with ω1 ≥ ω2 > 0.

result of this section is the following decomposition. The idea of the proof is similar
to the one used in [12] for proving a weighted Helmholtz decomposition.

Theorem 3. For any u ∈ H0(curl), we have u = Φ +∇p, where Φ ∈ H1
0(Ω) and

p ∈ H1
0 (Ω) such that

‖Φ‖21,ω � ‖curl u‖20,ω and ‖∇p‖20,ω � ‖u‖20,ω + ‖curl u‖20,ω.

Proof. First we apply Theorem 2 onΩ1 with the Dirichlet boundaryΓ1 = ∂Ω∩∂Ω1.
For given u ∈ H0(curl), we have, u|Ω1 = Φ1 + ∇p1 with Φ1 ∈ H1

Γ1
(Ω1) and

p1 ∈ H1
Γ1

(Ω1) such that

‖Φ1‖1,Ω1 � ‖curl u‖0,Ω1 and ‖∇p1‖0,Ω1 � ‖u‖H(curl,Ω1). (5)

Let Γ12 = ∂Ω1 ∩ ∂Ω2 be the interface. We then extend Φ1 and p1 to harmonic
functions on Ω2, and denote these extensions by Φ̃1 and p̃1. By the properties of
harmonic extension (cf. [20]), the trace theorem and (5), we obtain

‖Φ̃1‖1,Ω2 � ‖Φ1‖ 1
2 ,Γ12

� ‖Φ1‖1,Ω1 � ‖curl u‖0,Ω1 ,

‖p̃1‖1,Ω2 � ‖p1‖ 1
2 ,Γ12

� ‖p1‖1,Ω1 � ‖u‖H(curl,Ω1).

Now notice that onΩ2, we have u0
2 = u|Ω2 − (Φ̃1 +∇p̃1)|Ω2 ∈ H0(curl, Ω2).

Then by Theorem 1 we get the decomposition u0
2 = Φ0

2 +∇p0
2 with Φ0

2 ∈ H1
0 (Ω2)

and p0
2 ∈ H1

0 (Ω2) . This decomposition of u0
2 satisfies:

‖Φ0
2‖1,Ω2 � ‖curl u0

2‖0,Ω2 ≤ ‖curl u‖0,Ω2 + ‖curl Φ̃1‖0,Ω2

≤ ‖curl u‖0,Ω2 + ‖Φ̃1‖1,Ω2 � ‖curl u‖0,Ω2 + ‖curl u‖0,Ω1 ,

and similarly ‖∇p0
2‖0,Ω2 � ‖u‖H(curl,Ω). Let the decomposition of u in the whole

domain be u = Φ +∇p where
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Φ =
{

Φ1 in Ω1

Φ0
2 + Φ̃1 in Ω2

and p =
{
p1 in Ω1

p0
2 + p̃1 in Ω2

.

Recalling that ω1 ≥ ω2 > 0, this decomposition satisfies

‖Φ‖21,ω ≤ ω1‖Φ1‖21,Ω1
+ ω2‖Φ0

2‖21,Ω2
+ ω2‖Φ̃1‖21,Ω2

� ω1‖curl u‖20,Ω1
+ ω2

(
‖curl u‖20,Ω2

+ ‖curl u‖20,Ω1

)
+ ω2‖curl u‖20,Ω1

=
(

1 +
2ω2

ω1

)
ω1‖curl u‖20,Ω1

+ ω2‖curl u‖20,Ω2

� ‖curl u‖0,ω,

and similarly,

‖∇p‖20,ω ≤ ω1‖∇p1‖20,Ω1
+ ω2‖∇p0

2‖20,Ω2
+ ω2‖∇p̃1‖20,Ω2

� ω1‖u‖2H(curl,Ω1)
+ ω2‖u‖2H(curl,Ω)

� ‖curl u‖20,ω + ‖u‖20,ω.

This completes the proof.

Remark 2. The above result can be generalized to more general interface problems.
For example, to cases where the subdomains have no “cross edge”, that is, there
is no edge which belongs to more than two subdomains. In these cases, the same
conclusion holds because the coefficients satisfy a certain monotonicity.

3 Auxiliary Space Preconditioners

To realize the preconditioners for the finite element discretization of the model equa-
tions (1), the decomposition discussed in the previous section should be adapted to
the discrete setting.

The degrees of freedom specified for Vh determine the nodal interpolation op-
erator Πh, defined by Πhv =

∑
e∈Eh

(∫
e
v · dl

)
be, where Eh is the set of (inte-

rior) edges and be is the edge element basis function associated with the edge e.
In the sequel, we let Sh ⊂ H1

0 (Ω) be the standard nodal finite element space and
Sh ⊂ H1

0(Ω) be the vector counterpart of Sh. Due to the local approximation prop-
erty of Πh, we have the following standard estimate.

Lemma 1. For any Φ ∈ H1
0(Ω) such that curl Φ ∈ curl Vh, the interpolation

operator Πh satisfies

curl (ΠhΦ) = curl Φ and ‖h−1 (I −Πh)Φ‖0,ω � ‖Φ‖1,ω.

Based on Theorem 3 and Lemma 1, we obtain the following main result.
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Theorem 4. For any vh ∈ Vh there exist Φh ∈ Sh, ph ∈ Sh and ṽh ∈ Vh such
that vh = ṽh + ΠhΦh +∇ph, and for any constant τ ∈ (0, 1)

‖(h−1 + τ
1
2 )ṽh‖20,ω + |||Φh|||2τ + τ |ph|21,ω � ‖vh‖2A, (6)

where ‖vh‖2A =
∫
Ω ω|curl v|2 + τω|v|2dx and |||w|||2τ =

∫
Ω ω|∇w|2 + τω|w|2dx.

Proof. Notice that if vh ∈ Vh, by Theorem 3 and Lemma 1 there exists a Φ ∈
H1

0(Ω) such that curl vh = curl Φ = curl ΠhΦ. That is, vh −ΠhΦ is in the
kernel of curl. Therefore, there exists a ph ∈ Sh such that ∇ph = vh −ΠhΦ. It
satisfies

‖∇ph‖0,ω ≤ ‖vh‖0,ω + ‖ΠhΦ‖0,ω
≤ ‖vh‖0,ω + ‖(I −Πh)Φ‖0,ω + ‖Φ‖0,ω
� ‖vh‖0,ω + ‖curl vh‖0,ω.

In the last inequality, we used Lemma 1, the inverse inequality, and Theorem 3. We
then define the other two terms in the decomposition in the theorem as

ṽh := Πh (Φ−QωhΦ) ∈ Vh, Φh := QωhΦ ∈ Sh,

whereQωh is the weighted L2 projection introduced in [5]. Note that in our setting of
the interface problem,Qω

h satisfies

‖(I −Qωh)v‖0,ω � |v|1,ω and |Qωhv|1,ω � |v|1,ω, ∀v ∈ H1
0 (Ω).

Hence, we have |||Φh|||τ � ‖Φ‖1,ω � ‖curl vh‖0,ω ≤ ‖vh‖A. Moreover, we have

‖h−1ṽh‖0,ω ≤ ‖h−1(I −Πh)(I −Qωh)Φ‖0,ω + ‖h−1(I −Qωh)Φ‖0,ω
� ‖Φ‖1,ω � ‖curl vh‖0,ω � ‖vh‖A.

This completes the proof.

The resulting HX preconditioner for Eq. (2) reads

B := D−1
A + Ph(L(ω) + τM(ω))−1Ph

T + τ−1GL(ω)−1GT , (7)

where DA is the diagonal of A; Ph is the matrix representation of Πh; L(ω) +
τM(ω) is the matrix associated with the bilinear form (ω∇Φ,∇Ψ) + τ(ωΦ,Ψ)
on Sh; L(ω) is the matrix associated with (ω∇φ,∇ψ) on Sh; and G is the dis-
crete gradient matrix. Standard multilevel preconditioners are robust for solving the
H1-interface problems L(ω) + τM(ω) and L(ω) (see [21] for the theoretical justi-
fications). In practical implementation, we can also replace (L(ω) + τM(ω))−1 by
an AMG solver for Ph

TAPh, and replace L(ω)−1 by an AMG solver for GTAG.
Based on Theorem 4 and the framework developed in [9], the HX preconditioner

(7) is robust with respect to the coefficients and meshsize. More precisely, we have
the following theorem:

Theorem 5. The condition number κ (BA) ≤ C, where the constant C is indepen-
dent of the coefficients and the mesh size.
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4 Conclusions

In this paper, we have developed HX-preconditioners for the H(curl) interface prob-
lems. We have shown the robustness of the preconditioner by showing that the con-
dition number of the preconditioned system is uniformly bounded with respect to the
coefficients and the meshsize.
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