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1 Introduction

In this paper we study the application of Newton-Krylov-Schwarz method to fully
implicit, fully coupled solution of a global shallow water model. In particular, we are
interested in developing a scalable parallel solver when the shallow water equations
(SWEs) are discretized on the cubed-sphere grid using a second-order finite volume
method.

2 Governing Equations

The cubed-sphere grid of gnomonic type [ 7, 8] is used in this study. The grid is
generated by mapping the six faces of an inscribed cube to the sphere surface using
gnomonic projection. The six expanded patches are continuously attached together
with proper boundary conditions. On each patch, the expressions of the SWEs in
local curvilinear coordinates (x, y) ∈ [−π/4, π/4]2 are identical. When no bottom
topography is involved, the SWEs can be written in the following conservative form:
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and

S1 = Γ 1
11(huu) + 2Γ 1

12(huv) + fΛ
(
g12hu− g11hv

)
,

S2 = 2Γ 2
12(huv) + Γ 2

22(hvv) + fΛ
(
g22hu− g12hv

)
.

Here h is the fluid thickness, (u, v) are contravariant components of the fluid velocity,
g is the gravitational constant and f is the Coriolis parameter due to the rotation of
the sphere. The variable coefficients gmn, Λ and Γ 	mn are only dependent on the
curvilinear coordinates [12].

3 Discretizations

A uniform rectangular N × N grid is used on each patch. Grid cell C ij is centered
in (xi, yj), i, j = 1, · · · , N , with grid size Δx = Δy = π/2N . The approximate
solution in cell Cij at time t is defined as

Qij ≈
1

ΛijΔxΔy

∫ yj+Δy/2

yj−Δy/2

∫ xi+Δx/2

xi−Δx/2
Λ(x, y)Q(x, y, t) d x d y,

where Λij is evaluated at the cell center of Cij . Then we have the following semi-
discrete system of the SWEs:
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Here the numerical fluxes are approximated using the Osher’s Riemann solver [ 5, 6],
i.e.,
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where we assume |u| <
√
gg11h. The calculation of G follows an analogous way,

see [12] for details. The following two reconstruction methods for constant states are
considered in this study:

• Piecewise constant method (first order):
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• Piecewise linear method (second order):
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On each patch interface, one layer of ghost cells is needed and the numerical fluxes
are calculated symmetrically across the interface to insure the numerical conserva-
tion of total mass, see [11] for details.

Given a semi-discrete system

∂Q

∂t
+ L(Q) = 0,

we use the following second-order backward differentiation formula (BDF-2) for the
temporal integration:

1
2Δt

(
3Q(m) − 4Q(m−1) +Q(m−2)

)
+ L(Q(m)) = 0. (5)

Here Q(m) denotes Q evaluated at m-th time step with a fixed time step size Δt.
Only at the first time step, a first-order backward Euler (BDF-1) is used.

4 Nonlinear Solver

Fully implicit method enjoys an advantage that the time-step size is no longer con-
strained by the CFL condition. The price to pay is that a large sparse nonlinear alge-
braic system has to be solved at each time step. In this study, we use Newton-Krylov-
Schwarz (NKS) algorithm as the nonlinear solver.

In the NKS algorithm, to solve a nonlinear system F(X) = 0, an inexact New-
ton’s method is used in the outer loop. Let Xn be the approximate solution for the
n-th Newton iterate, we find the next solutionXn+1 as

Xn+1 = Xn + λnsn, n = 0, 1, ... (6)

where λn is the steplength decided by a linesearch procedure and sn is the Newton
correction. We then use the right-preconditioned GMRES (restarted every 30 itera-
tions) method to solve the Jacobian system

JnM
−1(Msn) = −F(Xn), Jn = F ′(Xn)

until the linear residual rn = Jnsn + F(Xn) satisfies

‖rn‖ ≤ η‖F(Xn)‖.

We implement a hand-coded analytic method to generate the Jacobian J n in the
calculation. The accuracy (relative tolerance) of the Jacobian solver is determined
uniformly by the nonlinear forcing terms η = 10−3. Some more flexible methods
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such as that of [2] may be used to get more efficient or more robust solutions. The
Newton iteration (6) ends when the following stopping condition is satisfied

||F(Xn+1)|| ≤ max{εr||F(X0)||, εa},

where εr, εa ≥ 0 are nonlinear tolerances.
To achieve uniform residual error at each time step, we use adaptive stopping

conditions with both lower and upper adjustments in the NKS method. To do a lower
adjustment, we do not let the iteration stop until

||F(Xn+1)|| ≤ 1.0× 10−5

even when the relative tolerance of εr = 10−7 is satisfied. An upper adjustment can
be done by setting the absolute tolerance to be ε (0)

a = 10−8 at the first time step and
then lettting it adaptively be decided by

ε(m)
a ← max{ε(m−1)

a , ||F(X(m−1))||},

where X (m−1) is the converged solution of previous time step.
The preconditioner M−1 is obtained by using the restricted additive Schwarz

(RAS, [1, 9]) method based on the domain decomposition of the cubed-sphere de-
scribed briefly here. The six patches of the cubed-sphere can be either simultane-
ously [12] or independently divided into non-overlapping subdomains. In this study,
the six patches are treated in a separated way, i.e., the six patches are respectively de-
composed into p non-overlapping rectangular subdomains. Each subdomain is then
mapped onto one processor. Thus 6p is the total number of processors and subdo-
mains as well. An overlapping decomposition can be obtained by extending each
subdomain with δ layers of grid points in all directions. It should be noted that the
overlapping area might lie on other patches and directions might also change.

In practice we use a point-wise ordering for both unknowns and the nonlinear
equations, resulting in Jacobian matrices with 3×3-block entries. Subdomain solves
are done by LU factorizations or incomplete LU (ILU) factorizations with fill-in
level 
. Here the LU and the ILU factorizations are done in a point-wise manner, i.e.,
fill-ins are always 3× 3 blocks rather than scalars.

5 Numerical Results

Our numerical tests are carried out on an IBM BlueGene/L supercomputer with
4,096 nodes. Each node has a dual-core IBM PowerPC 440 processor running at
700 MHz and with 512 MB of memory. We use the 4-wave Rossby–Haurwitz prob-
lem in [10] as the test case in this study. The characteristic time and length scale is
one day and the Earth’s radius. The result on day 14 is provided in Fig. 1, consistent
with the reference solutions in [3, 4].

To test the performance of the preconditioner, we use 192 processor cores to run
a fixed size problem on a 512× 512× 6 grid for 10 time steps with Δt = 0.1 days
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Fig. 1. Height field of Rossby–Haurwitz problem on day 14, grid size 128 × 128 × 6, time
step size Δt = 0.1 days. The contour levels are from 8,300 to 10,500 m with an interval of
100 m. The four innermost lines near to the equators are at 10,500 m.

repeatedly with various levels of overlaps and fill-in ratios. First we try to use RAS
preconditioner obtained directly from the Jacobian matrix Jn. In this case the ILU
factorizations of the subdomain problems results in many GMRES iterations. If we
use LU factorization instead, however, the factorization may fail due to insufficient
memories and the performance is very poor even when the factorization succeeds.

Thus we use Jacobian matrix with first-order spatial discretization to construct
the RAS preconditioner even when a high order scheme is used in the nonlinear
function evaluation. This is based on the fact that Jacobian matrices are all related
to the original SWEs no matter what spatial discretization is used. As it can be seen
in Tables 1 and 2, the RAS precoditioner works in the NKS algorithm. Larger over-
laps or subdomain ILU fill-ins help in reducing the number of GMRES iteration.
However, the per-iteration work increases at the same time. The optimal choice in
terms of computing time for this test is ILU(3) subdomain solvers with overlapping
factor 2.

Using the optimal parameters, we run a set of large-scale tests with the same
problem on a 1,024× 1,024× 6 grid with gradually increased number of processor
cores. As seen from Fig. 2, our solver scales up to 6,144 processor cores almost
linearly with parallel efficiency 73.8%.
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Table 1. The number of GMRES iterations per Newton iteration, averaged over the first 10
time steps.

Overlap 0 1 2 3 4

ILU(0) 309.5 299.2 294.4 292.7 291.4
ILU(1) 199.6 178.0 171.7 168.4 166.0
ILU(2) 194.1 150.2 141.0 139.3 137.8
ILU(3) 188.1 134.5 125.3 122.3 120.4
ILU(4) 184.9 127.0 116.1 111.8 110.9

LU 139.9 87.8 78.7 76.2 75.4

Table 2. The averaged compute time (in seconds) over the first 10 time steps.

Overlap 0 1 2 3 4

ILU(0) 10.13 11.13 11.38 11.65 11.90
ILU(1) 7.99 8.36 8.43 8.58 8.67
ILU(2) 8.13 7.84 7.79 7.94 8.09
ILU(3) 8.51 7.80 7.74 7.84 7.99
ILU(4) 8.90 7.96 7.83 7.87 8.04

LU 10.97 9.75 9.88 10.25 10.69
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Fig. 2. Compute time curve on the Rossby–Haurwitz problem.
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