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1 Introduction

In this paper, we will derive a novel adaptive finite element method for the following
symmetric, elliptic obstacle problem: Find u ∈ K such that

a(u, v − u) ≥ (f, v − u) ∀v ∈ K (1)

where Ω ⊂ R2 is a bounded polygonal domain with Lipschitz-continuous boundary
∂Ω, ψ ∈ C(Ω) is a lower obstacle satisfying ψ ≤ 0 on ∂Ω, f ∈ L2(Ω) is a load
term and

K = {v ∈ H1
0 (Ω) | v ≥ ψ a.e. in Ω},

and

a(v, w) =
∫
Ω

∇v · ∇w, v, w ∈ H1
0 (Ω).

This problem admits a unique solution u since K is a nonempty, closed, and convex
set, and a(·, ·) is H1

0 (Ω)-coercive.
Adaptive solvers are now widely used in numerical simulations of lots of prob-

lems for better accuracy with minimal computational cost. The reasons for choosing
adaptive method for the problem (1) are two-folded. First, the grid in the contact
zone is often not necessarily as fine as that in the non-contact zone. Secondly, the so-
lution u may have singularity in some local areas. Therefore, for obstacle problems,
a finite element solution on a suitable non-uniform grid may approximate the exact
solution much better than that on a uniform grid with the same number of degrees of
freedoms. Solvers which can generate non-uniform grids adaptively according to the
problem to-be-solved are desired.

The adaptive solver in this paper will be established based on a near-optimal
hierarchical estimate. Note that the hierarchical a posteriori analysis can be traced
back to the pioneering works [2, 7, 20] and the monographs [1, 19]. The hierarchical
analysis for obstacle problems have been studied in [13, 18, 22]. The hierarchical
estimate presented in this paper improves the results in [22] by estimating directly
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the energy norm of the discretization error, instead of the energy functional of the
discretization error in [22].

This paper is organized as follows. In Sect. 2, we present a near-optimal hierar-
chial estimate for obstacle problems. A detailed description of our adaptive method
will be presented in Sect. 3. In Sect. 4, numerical experiments will be given to show
that our algorithm has the optimal convergence rate.

Throughout this paper, “A � B” means that A can be bounded by B multiplied
with a generic constant depending only on the shape regularity of the underlying
grid, “A � B” means “A � B” and “B � A”.

2 A Near-Optimal Hierarchical Error Estimate

Let T be a conforming and shape regular triangulation ofΩ withN and let E denote
the set of all vertices and interior edges, respectively. We introduce the space S ⊂
H1

0 (Ω) of piecewise linear finite elements on T spanned by the nodal basis {φp |p ∈
N ∩Ω}. The finite element discretization of (1) reads as

uS ∈ KS : a(uS , v − uS) ≥ (f, v − uS) ∀v ∈ KS (2)

where the discrete constraints set

KS = {v ∈ S | v(p) ≥ ψ(p) ∀p ∈ N}.

Note that KS ⊂ K , if ψ ∈ S.
We define the residual type functional σS by

〈σS , v〉 = (f, v)− a(uS , v) =
∫
Ω

fv +
∑
E∈E

∫
E

jEv, ∀v ∈ H1
0 (Ω)

where jE = ∂nuS |τ2 − ∂nuS |τ1 denotes the jump of the normal flux across the
common edge E = τ1 ∩ τ2 of two triangles τ1, τ2 ∈ T and n denotes the normal
vector on E pointing from τ1 to τ2. For all E ∈ E , let φE be the piecewise affine
function characterized by φE(p) = δxE ,p for all p ∈ N ′ = N ∪ {xE′ |E′ ∈ E}, here
xE′ is the midpoint of E ′. We define

ρE = 〈σS , φE〉‖φE‖−1, E ∈ E

and will use |ρE | as our error indicators. Note that the similar edge-oriented indica-
tors have been introduced in the hierarchical estimate for variational equations [ 2, 5],
and for variational inequalities [11, 13, 18, 22]. Not all the ρE , E ∈ E are efficient.
To determine the efficient ρE , we let

N • = {p ∈ N
∣∣uS(p) = ψ(p) or p ∈ ∂Ω}, N ◦ = {p ∈ N ∩Ω

∣∣uS(p) > ψ(p)}

respectively be the set of contact and non-contact nodes and
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E• = {E ∈ E|NE ⊂ N •}, E◦ = {E ∈ E|NE ∩ N ◦ �= ∅}

be the set of contact and non-contact edges, where NE = N ∩ E be the nodes on
E,E ∈ E . Moreover we define E+ := {E ∈ E

∣∣ρE ≥ 0} and let

E1 = E \ E2, E2 = E◦ ∪ E+.

The indicators |ρE |, E ∈ E2 are efficient.
The second type of indicators are patch-oriented quantities ρ p = ‖hpf‖0,ωp, p ∈

N , where the patch ωp = supp φp. We define

N2 = {p ∈ N|fp ≥ 0} ∪ N ◦.

The indicators ρp are efficient for all p ∈ N2.
To present efficiency and reliability of our hierarchial estimator, we need to split

again the set of contact nodesN • into

N • = N •
0 ∪N •

1 ∪ N •
2 ∪ N •

3 ∪ N •
4

where

N •
0 = {p ∈ N • ∣∣ uS |ωp = ψ|ωp , f |ωp ≤ 0, jE ≤ 0 ∀E ∈ Ep}

is the set of the so-called full-contact nodes (c.f, [10, 18]) and

N •
1 = {p ∈ N • ∣∣ uS |ωp = ψ|ωp , fp ≤ 0, jE ≤ 0 ∀E ∈ Ep} \ N •

0 ,

N •
2 = {p ∈ N • ∣∣ uS |ωp = ψ|ωp , fp ≤ 0, ∃ E ∈ Ep s.t. jE > 0},

N •
3 =

{
p ∈ N •∣∣uS > ψ in ωp \ {p}

}
,N •

4 = N • \ (N •
0 ∪ N •

1 ∪ N •
2 ∪N •

3 ).

We define our hierarchical estimator by

η2 =
∑
E∈E2

ρ2
E +

∑
p∈N•

3 ∪N•
4

‖hpf‖20,ωp

and the oscillation by

osc2 =
∑

p∈N\N•
0

osc2p +
∑
p∈N•

3

‖∇(ψ − uS)‖20,ωp

where the patch-oriented oscillation (c.f., [9]) is defined for all p ∈ N by

oscp = ‖hp(f − fp)‖0,ωp .

Here fp = 0 if p ∈ N •
2 and fp = 1

|ωp|
∫
ωp
f otherwise. Note that the oscillation

defined above is smaller than that defined in [22] and it seems to be really of high-
order.

We have the following efficiency and reliability results.
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Theorem 1. There holds the lower bound

η � ‖e‖+ osc. (3)

Moreover, if ψ ∈ S, there holds the upper bound

‖e‖ � η + osc. (4)

Note that in the above theorem, the efficiency result holds for general obstacle ψ ∈
C(Ω) but the reliability result only holds for obstacle functions which are piecewise
affine with respect to the underlying grid T . The detailed and very complicated proof
of this theorem will be given in a future paper [21].

3 An Adaptive Finite Element Method

This section is dedicated to the presentation of an adaptive finite element method for
the obstacle problem (1).

The main purpose of our adaptive algorithm is to construct the sequence of tri-
angulations Tj , j = 0, 1, 2, · · · , resulting from the jth local refinement steps of an
initial triangulation T0. Here and throughout the paper, the subscript j will always
refer to the corresponding triangulation T j as, for example, in Nj , Ej , Sj , uj, ψj ,
and so on.

As a standard adaptive scheme, our adaptive algorithm consists of loops of the
following four basic steps

Solve → Estimate → Mark → Refine.

which will be described in the following.
Solve. To solve the discrete problem (2), we apply monotone multigrid methods

proposed in [12] on the non-uniform grid Tj . Our numerical implementation shows
that even for non-uniform grid, this monotone multigrid method requires onlyO(n j)
operations for each iteration, where nj denotes the degree of freedoms of Tj , and it
converges more rapidly than the standard nonlinear Gauss–Seidel method since its
convergence rate is about 1.

Given a mesh Tj and an initial iterate u0
j for the solution, the algorithm SOLVE

computes the discrete solution

uj := SOLVE(Tj , u0
j).

Estimate. We use the hierarchical estimators presented in the previous section
to estimate the error. For a given mesh Tj and the finite element approximation uj ,
the subroutine ESTIMATE computes the edgewise hierarchical indicators ρE for all
edges E ∈ Ej2 and the nodalwise indicators ρp for all p ∈ N •

j3 ∪ N •
j4:

({ρE}E∈Ej2 , {ρp}p∈N•
j3∪N•

j4
) = ESTIMATE(Tj , uj).
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Mark. We use a variant of Dörfler marking strategy [8] described as below. First,
we order all the quantities {|ρE |}E∈Ej2 and {ρp}p∈N•

j3∪N•
j4

according to their size.
Secondly, proceeding from the largest to smallest quantities, we collect all entries
from these two sets until they sum up to θηj where θ ∈ (0, 1) is some given param-
eter. Finally, if ρ2

E or ρ2
P are contained in this collection, then all the triangles in the

support of φE or φp are marked for refinement.
Given a mesh Tj and the indicators ({ρE}E∈Ej2 , {ρp}p∈N•

j3∪N•
j4

), together with

the parameter θ ,MARK generates a subset T̃j of Tj :

T̃j = MARK(θ, Tj , ({ρE}E∈Ej2 , {ρp}p∈N•
j3∪N•

j4
)).

Refine. We will use the so-called newest vertex bisection techniques to refine the
mesh Tj : first we label one vertex of each triangle in Tj as the newest vertex, the
opposite edge of the newest vertex is called reference edge. After being labeled, each
the element τ ∈ T̃j is then bisected to two new children elements by connecting the
newest vertex to the midpoint of the reference edge. After all the marked triangles
are bisected, more bisections are necessary to eliminate the hanging nodes (cf.,[ 3, 4,
15]). It is worth mentioning that here, each marked triangle is refined only once and
consequently, the interior node property[14, 17] has been circumvented.

Given a mesh Tj and a marked set T̃j , REFINE constructs the conforming and
shape regular triangulation Tj+1 :

Tj+1 = REFINE(Tj , T̃j).

Now we are ready to present our adaptive finite element methods for ( 1) which
consists of the loops of the above four subroutines SOLVE, ESTIMATE, MARK,
and REFINE, consecutively. Given an initial triangulation T0, a tolerance ε > 0 and
a parameter 0 < θ < 1, our adaptive solver can be described as below:

uFE = AFEM4OP(T0, ε, θ)
Set u0 = 0, for j = 1, . . ., do the following :

1. Set u0
j = uj−1, then uj = SOLVE(Tj , u0

j).
2. ({ρE}E∈Ej2 , {ρp}p∈N•

3 ∪N•
4
) = ESTIMATE(Tj , uj).

3. Compute ηj . If ηj ≤ ε, uFE = uj , stop. Otherwise, go to Step 4.
4. T̃j = MARK(θ, Tj , ({ρE}E∈Ej2 , {ρp}p∈N•

3 ∪N•
4
)).

5. Tj+1 = REFINE(Tj , T̃j). Set j = j + 1, go to Step 1.

4 Numerical Experiments

In our numerical experiments, we will test two examples to verify if our algorithm
AFEM4OP has a quasi-optimal convergence rate in terms of the number of degrees
of freedom. Note that for adaptive finite element methods for elliptic PDEs, the opti-
mal convergence rate has been obtained both theoretically and numerically in recent
papers such as [6, 16, 17].
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Example 1 Constant Obstacle. Let the obstacle function ψ ≡ 0, the domainΩ =
(−1, 1)2, and the radially symmetric right-hand side

f(x) =

⎧⎨⎩
−8r2, |x| > r

−8(2|x|2 − r2)), |x| ≤ r

.

This problem has the unique radially symmetric exact solution

u(x) = (max{r2 − |x|2, 0})2.

For simplicity, we select r = 0.7 in our numerical computations. Then the circle
{x ∈ Ω|r = 0.7} is the free boundary of the problem which decompose the domain
to the contact zone {x ∈ Ω||r > 0.7} and the non-contact zone {x ∈ Ω||r < 0.7}.

In our numerical experiments, the initial triangulation T0 consisting of four con-
gruent triangles. Selecting θ = 0.5 in AFEM4OP, we obtain the sequence of triangu-
lations Tj , j = 0, 1, . . . , 14. The left picture of Fig. 1 presents the discretization error
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Fig. 1. Left: the exact error and the hierarchial estimator for Example 1, Right: the estimator
for Example 2.

‖u− uSj‖ and the hierarchical estimator ηj over the number nj = #Tj . Obviously,
both the exact error and the hierarchical estimator have an optimal convergence rate
of O(n−1/2

j ).
Example 2 Lipschitz Obstacle. We consider (1) withΩ = {x ∈ R2 | |x1|+|x2| <

1}, the right hand side f = −5 and the Lipschitz obstacle

ψ(x) = −dist(x, ∂Ω).

As in the first example, we apply the algorithm AFEM4OP to obtain a sequence
of triangulations Tj , j = 1, 2, . . . , 18 based upon the initial triangulation T0 con-
sisting of four congruent triangles. The adaptive parameter θ = 0.35. As no exact
solution is available, the final approximate solution u18 is depicted in the left pic-
ture of Fig. 2 while the right picture shows the grid in the 18th iteration step. The
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Fig. 2. Approximate solution u18 and the grid in the 18th adaptive iteration step.

triangulation is locally refined in the neighborhood of the free boundary which is in
agreement with the corresponding lack of regularity. The hierarchical estimator is
presented in the right picture of 1. We still observe that ηTj = O(n−1/2

j ).
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