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1 Introduction

In this work, we report on an ongoing project to implement an hp-adaptive finite
element method. The inspiration of this work came from the development of certain
a posteriori error estimates for high order finite elements based on superconvergence
[7, 8, 9]. We wanted to create an environment where these estimates could be evalu-
ated in terms of their ability to estimate global errors for a wide range of problems,
and to be used as the basis for adaptive enrichment algorithms.

Their use in a traditional h-refinement scheme for fixed degree p is straightfor-
ward, as is their use for mesh smoothing, again with fixed p. What is less clear and
thus more interesting is their use in a traditional adaptive p-refinement scheme. One
issue we hope to resolve, at least empirically, is the extent to which the supercon-
vergence forming the foundation of these estimates continues to hold on meshes of
variable degree. If superconvergence fails to hold globally (for example, in our pre-
liminary experiments, superconvergence seems to hold in the interiors of regions of
constant p but fails to hold along interfaces separating elements of different degrees),
we would still like to determine if they remain robust enough to form the basis of an
adaptive p-refinement algorithm.

As this is written, we have implemented in the PLTMG package [2] adap-
tive h-refinement/coarsening, adaptive p-refinement/coarsening, and adaptive mesh
smoothing. These three procedures can be used separately, or mixed in arbitrary com-
binations. For example, one could compose an adaptive algorithm consisting of al-
ternating steps of h and p-refinement. Since this requires that all procedures are able
to process meshes with both variable h and p, many of the internal data structures
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and existing algorithms in the PLTMG package had to be generalized and extended.
However, at present there remains open the more delicate and challenging issue of
hp-refinement; that is, how to use these error estimates to decide if it is better to re-
fine a given element into several child elements (h-refinement), or increase its degree
(p-refinement). We hope to be able to report progress on this point at some time in
the future.

Since PLTMG has options for parallel adaptive enrichment, this aspect also needs
to be addressed. Fortunately, the parallel adaptive meshing paradigm implemented
in PLTMG, see [1, 3, 4], formally works as well for p and hp-adaptivity as it does
for h-adaptivity for which it was originally developed. As its final step, the paradigm
requires the solution of a large global set of equations. A special DD algorithm (see
[5, 6]) taking advantage of the structure of the parallel adaptive procedure was de-
veloped for this purpose.

2 A Posteriori Error Estimate

In the case of two dimensions, we consider an element t with vertices ν i, and edges
ei, 1 ≤ i ≤ 3, with ei opposite νi. Let ht denote the diameter of t. The barycentric
coordinates for element t are denoted c i, 1 ≤ i ≤ 3. The restriction of the C0 piece-
wise polynomial space of degree p ≥ 1 to element t consists of the (p+1)(p+2)/2-
dimensional space Pp of polynomials of degree p, with degrees of freedom given by
nodal values at the barycentric coordinates

(c1, c2, c3) = (j/p, k/p, (p− j − k)/p)

for 0 ≤ j ≤ p, 0 ≤ k ≤ p− j.
Superconvergent derivative recovery schemes for this family of elements were

developed in [7, 8, 9]. For the continuous piecewise polynomial space of degree p,
let ∂puh denote any of the (discontinuous piecewise constant) p-th derivatives. The
recovered p-th derivative is denoted by R(∂ puh) ≡ SmQ(∂puh). Here Q is the
L2 projection from discontinuous piecewise constants into the space of continuous
piecewise linear polynomials, andS is a multigrid smoother for the Laplace operator;
m is a small integer, typically one or two. Under appropriate smoothness assump-
tions, it was shown that ‖∂pu−R(∂puh)‖ has better than the first order convergence
of ‖∂p(u− uh)‖.

To describe our a posteriori estimate for the case of an element of degree p, we
write

Pp+1(t) = Pp(t)⊕ Ep+1(t)

where the hierarchical extension Ep+1(t) consists of those polynomials in Pp+1(t)
that are zero at all degrees of freedom associated with Pp(t). In the case of two
dimensions, this is a subspace of dimension p+ 2, with a convenient basis given by

ψp+1,k =
k−1∏
j=0

(c1 − j/p)
p−k∏
m=0

(c2 −m/p)
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for 0 ≤ k ≤ p+ 1. Using this basis, we approximate the error u− uh,p on element t
as

u− uh,p ≈ eh,p ≡ αt

p+1∑
k=0

∂kc1∂
p+1−k
c2 û

k!(p+ 1− k)!ψp+1,k. (1)

The partial derivatives of order p + 1 appearing in (1) are formally O(hp+1
t ) when

expressed in terms of ∂x and ∂y . The derivative ∂kx∂
p+1−k
y û is constant on element

t, computed by differentiating the recovered p-th derivatives of u h, which are linear
polynomials on element t.

∂kx∂
p+1−k
y û =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂yR(∂pyuh), k = 0,

(∂xR(∂k−1
x ∂p+1−k

y uh) + ∂yR(∂kx∂p−ky uh))/2, 1 ≤ k ≤ p,

∂xR(∂pxuh), k = p+ 1.

The constant αt is chosen such that

p∑
k=0

‖∂kx∂p−ky eh,p‖2t =
p∑
k=0

‖∂kx∂p−ky uh −R(∂kx∂
p−k
y uh)‖2t

Normally, one should expect αt ≈ 1, except for elements where the true solution u
is not smooth enough to support p derivatives.

3 Basis Functions

One aspect of our study that is a bit unconventional is our use of nodal basis func-
tions, rather than a hierarchical family of functions. The standard element of degree p
uses standard nodal basis functions, as illustrated in Fig. 1, left. Along edges shared
by elements of different degrees, the element of lower degree inherits the degrees of
freedom of the higher degree element. This results in elements of degree p with one
or two transition edges of higher degree. Some typical cases are illustrated in Fig. 1.

To illustrate the construction of the nodal basis for transition elements, consider
the case of an element t of degree p with one transition edge of degree p+1. Without
loss of generality take this to be edge three. We define one special polynomial of
degree p + 1, zero at all nodes of the standard element of degree p, and identically
zero on edges one and two, by

φ̃p+1 =

⎧⎪⎨⎪⎩
∏(p−1)/2
k=0 (c1 − k/p)(c2 − k/p), for p odd,

(c1 − c2)
∏(p−2)/2
k=0 (c1 − k/p)(c2 − k/p), for p even.

The polynomial space for the transition element is given by P p ⊕ {φ̃p+1}. We form
linear combinations of φ̃p+1 and the p+ 1 standard nodal basis functions associated
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with edge three to form the p + 2 nodal basis functions for the transition edge. Be-
cause each of these p+ 2 polynomials is zero on edges one and two, and zero at all
internal nodes for element t, all linear combinations of them also satisfy these prop-
erties, so the required calculation effectively reduces to a simple one-dimensional
change of basis. If the edge is of degree p + k, the polynomial space is given by
Pp ⊕ {φ̃p+1(c1 − c2)m}k−1

m=0, and a similar construction yields the required nodal
basis for the transition edge. If a second transition edge is present, it is treated anal-
ogously. Because of our construction, each transition edge can be treated indepen-
dently. It is also easy to see that the global finite element space constructed in this
fashion is C0.
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Fig. 1. A standard cubic element (left), a cubic element with one quartic edge (middle) and a
cubic element with one quartic and one quintic edge (right).

4 Parallel Adaptive Algorithm

A general approach to parallel adaptive discretization for systems of elliptic partial
differential equations was introduced in [3, 4]. This approach was motivated by the
desire to keep communications costs low, and to allow sequential adaptive software
such as PLTMG to be employed without extensive recoding.

The original paradigm has three main components:

Step I: Load Balancing. We solve a small problem on a coarse mesh, and use
a posteriori error estimates to partition the mesh. Each subregion has approxi-
mately the same error, although subregions may vary considerably in terms of
numbers of elements, or polynomial degree.
Step II: Adaptive Meshing. Each processor is provided the complete coarse prob-
lem and instructed to sequentially solve the entire problem, with the stipulation
that its adaptive enrichment (h or p) should be limited largely to its own parti-
tion. The target number of degrees of freedom for each processor is the same. At
the end of this step, the mesh is regularized such that the global finite element
space described in Step III is conforming.
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Step III: Global Solve. The final global problem consists of the union of the
refined partitions provided by each processor. A final solution is computed using
domain decomposition.

A variant of the above approach, in which the load balancing occurs on a much
finer space, was described in [1]. The motivation was to address some possible prob-
lems arising from the use of a coarse grid in computing the load balance. This variant
also has three main components.

Step I: Load Balancing. On a single processor we adaptively create a fine space
of size NP , and use a posteriori error estimates to partition the mesh such that
each subregion has approximately equal error, similar to Step I of the original
paradigm.
Step II: Adaptive Meshing. Each processor is provided the complete adaptive
mesh and instructed to sequentially solve the entire problem. However, in this
case each processor should adaptively coarsen regions corresponding to other
processors, and adaptively enrich its own subregion. The size of the problem
on each processor remains NP , but this adaptive rezoning strategy concentrates
the degrees of freedom in the processor’s subregion. At the end of this step, the
global space is made conforming as in the original paradigm.
Step III: Global Solve. This step is the same as in the original paradigm.

Using the variant, the initial mesh can be of any size. Indeed, our choice of N P

is mainly for convenience and to simplify notation; any combination of coarsening
and refinement could be allowed in Step II.

5 DD Solver

Let Ω = ∪Pi=1Ωi ⊂ R2 denote the domain, decomposed into P geometrically con-
forming subdomains. Let Γ denote the interface system. The degree of a vertex x
lying on Γ is the number of subregions for which x ∈ Ω̄i. A cross point is a vertex
x ∈ Γ with degree(x) ≥ 3. We assume that the maximal degree at cross points is
bounded by the constant δ0. The connectivity of Ωi is the number of other regions
Ωj for which Ω̄i ∩ Ω̄j �= ∅. We assume the connectivity of Ωi is bounded by the
constant δ1.

In our algorithm, we employ several triangulations. The mesh T is a globally
refined, shape regular, and conforming mesh of size h. We assume that the fine mesh
T is aligned with the interface system Γ . The triangulations T i ⊂ T , 1 ≤ i ≤ P
are partially refined triangulations; they coincide with the fine triangulation T within
Ωi, but are generally much coarser elsewhere, although as in the case for the variant
paradigm, along the interface system Γ , T i may have some intermediate level of
refinement.

Let S denote the hp space of piecewise polynomials, associated with the trian-
gulation T , that are continuous in each of theΩ i, but can be discontinuous along the
interface system Γ . Let S̄ ⊂ S denote the subspace of globally continuous piece-
wise polynomials. The usual basis for S is just the union of the nodal basis functions
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corresponding to each of the subdomainsΩ i; such basis functions have their support
in Ω̄i and those associated with nodes on Γ will have a jump at the interface. In
our discussion, we will have occasion to consider another basis, allowing us to write
S = S̄ ⊕ X , where X is a subspace associated exclusively with jumps on Γ . In par-
ticular, we will use the global conforming nodal basis for the space S̄ , and construct
a basis for X as follows. Let zk be a node lying on Γ shared by two regions Ω i and
Ωj (for now, zk is not a crosspoint). Let φi,k and φj,k denote the usual nodal basis
functions corresponding to zk in Ωi and Ωj , respectively. The continuous nodal ba-
sis function for zk in S̄ is φk ≡ φi,k + φj,k, and the “jump” basis function in X is
φ̂k ≡ φi,k − φj,k. The direction of the jump is arbitrary at each zk, but once cho-
sen, will be used consistently. In this example, at point zk we will refer to i and the
“master” index and j as the “slave” index. At a cross point where 
 > 2 subregions
meet, there will be one nodal basis function corresponding to S̄ and 
− 1 jump ba-
sis functions. These are constructed by choosing one master index for the point, and
making the other 
− 1 indices slaves. We can construct 
− 1 basis functions for X
as φi,k − φj,k, where i is the master index and j is one of the slave indices.

For each of the triangulations T i, 1 ≤ i ≤ P we have a global nonconforming
subspace Si ⊂ S, and global conforming subspace S̄i ⊂ S̄. In a fashion similar to
S, we have S i = S̄i ⊕X i.

For simplicity, let the continuous variational problem be: find u ∈ H 1(Ω) such
that

a(u, v) = (f, v) (2)

for all v ∈ H1(Ω), where a(u, v) is a self-adjoint, positive definite bilinear form
corresponding to the weak form of an elliptic partial differential equation, and
|||u|||2Ω = a(u, u) is comparable to the usualH1(Ω) norm.

To deal with the nonconforming nature of S, for u, v ∈ S, we decompose
a(u, v) =

∑P
i=1 aΩi(u, v). For each node z lying on Γ there is one master index

and 
 − 1 > 0 slave indices. The total number of slave indices is denoted by K ,
so the total number of constraint equations in our nonconforming method is K . To
simplify notation, for each 1 ≤ j ≤ K , let m(j) denote the corresponding master
index, and zj the corresponding node. We define the bilinear form b(v, λ) by

b(v, λ) =
K∑
j=1

{vm(j) − vj}λj (3)

where λ ∈ RK . In words, b(·, ·) measures the jump between the master value and
each of the slave values at each node on Γ . The nonconforming variational formula-
tion of (2) is: find uh ∈ S such that

a(uh, v) + b(v, λ) = (f, v)
b(uh, ξ) = 0 (4)

for all v ∈ S and ξ ∈ RK . Although this is formally a saddle point problem, the
constraints are very simple; in particular, (4) simply imposes continuity at each of
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the nodes lying on Γ , which in turn, implies that uh ∈ S̄ . Thus uh also solves the
reduced and conforming variational problem: find u h ∈ S̄ such that

a(uh, v) = (f, v)

for all v ∈ S̄ .
LetKi denote the index set of constraint equations in (3) that correspond to nodes

present in T i. Then
bi(v, λ) =

∑
j∈Ki

{vm(j) − vj}λj .

We are now in a position to formulate our domain decomposition algorithm. Our
initial guess u0 ∈ S is generated as follows: for 1 ≤ i ≤ P , we find (in parallel)
u0,i ∈ S̄i satisfying

a(u0,i, v) = (f, v) (5)

for all v ∈ S̄i. Here we assume exact solution of these local problems; in practice,
these are often solved approximately using iteration. The initial guess u 0 ∈ S is
composed by taking the part of u0,i corresponding to the fine subregion Ω i for each
i. In particular, let χi be the characteristic function for the subregionΩ i. Then

u0 =
P∑
i=1

χiu0,i

To compute uk+1 ∈ S from uk ∈ S, we solve (in parallel): for 1 ≤ i ≤ P , find
ek,i ∈ Si and λk,i ∈ RK such that

a(ek,i, v) + bi(v, λk,i) = (f, v)− a(uk, v)
bi(ek,i, ξ) = −bi(uk, ξ) (6)

for all v ∈ Si and ξ ∈ RK . We then form

uk+1 = uk +
P∑
i=1

χiek,i.

Although the iterates uk are elements of the nonconforming space S, the limit func-
tion u∞ = uh ∈ S̄. In some sense, the purpose of the iteration is to drive the jumps
in the approximate solution uk to zero. Also, although (6) suggests a saddle point
problem needs to be solved, by recognizing that only χ iek,i is actually used, one can
reduce (6) to a positive definite problem of the form (5). In particular, the Lagrange
multipliers λk,i need not be computed or updated.

The information required to be communicated among the processors is only the
solution values and the residuals for nodes lying on Γ , which is necessary to compute
the right hand sides of (6). This requires one all-to-all communication step at the
beginning of each DD iteration.
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6 Numerical Results

In this section, we present some numerical results. Our examples were run on a
LINUX-based Beowulf cluster, consisting of 38 nodes, each with two quad core Xeon
processors (2.33 GHz) and 16 GB of memory. The communication network is a gi-
gabit Ethernet switch. This cluster runs the NPACI ROCKS version of LINUX and
employs MPICH2 as its MPI implementation. The computational kernels of PLTMG

[2] are written in FORTRAN; the gfortran compiler was used in these experiments,
invoked using the script mpif90 and optimization flag -O.

In these experiments, we used PLTMG to solve the boundary value problem

−Δu = 1 in Ω,

u = 0 on ∂Ω,

where Ω is a domain shaped like Lake Superior.
In our first experiment, the variant strategy was employed. A mesh of NP de-

grees of freedom was created on a single processor using h-adaptive and p-adaptive
refinement. Elements on this mesh had different sizes and degrees. This mesh was
then broadcast to P processors, where a strategy of combined coarsening and refine-
ment in both h and p was used to transfer approximately NP /2 degrees of freedom
from outside Ωi to inside Ωi. The global fine mesh was then made h-conforming
(geometrically conforming) as described in [3, 4] and p-conforming (degrees agree
on shared edges along the interface Γ ). Note that the adaptive strategies implemented
in PLTMG allow mesh moving and other modifications that yield meshes T i that gen-
erally are not submeshes of the global conforming mesh T (by definition they are
identical on Ωi and ∂Ωi). However, PLTMG does insure that the partitions remain
geometrically conforming, even in the coarse parts of the domain, and in particular,
that the vertices on the interface system in each Ti are a subset of the vertices of
interface system of the global mesh T .

In this experiment, three values ofNP (400, 600, and 800 K), and eight values of
P (2k, 1 ≤ k ≤ 8) were used, yielding global fine meshes ranging in size from about
626 K to 96.5 M unknowns. Because our cluster had only 38 nodes, for larger values
of P , we simulated the behavior of a larger cluster in the usual way, by allowing
nodes to have multiple processes.

In these experiments, the convergence criterion was

‖δUk‖G
‖Uk‖G

≤ ‖δU0‖G
‖U0‖G

× 10−3. (7)

This is more stringent than necessary for purposes of computing an approximation
to the solution of the partial differential equation, but it allows us to illustrate the
behavior of the solver as an iterative method for solving linear systems of equations.

Table 1 summarizes this computation. The columns labeled DD indicate the
number of domain decomposition iterations required to satisfy the convergence cri-
teria (7). For comparison, the number of iterations needed to satisfy the actual con-
vergence criterion used in PLTMG, based on reducing the error in the solution of the
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linear system to the level of the underlying approximation error, is given in paren-
theses. From these results it is clear that the number of iterations is stable and largely
independent of N and P over this range of values. The size of the global mesh for
the variant strategy can be estimated from the formula

N ≈ θPNP +NP (8)

where θ = 1/2. Equation (8) predicts an upper bound, as it does not account for re-
finement outside of Ωi and coarsening inside Ωi, needed to keep the
mesh conforming and for other reasons. For NP = 800 K, P = 256, (8) predicts
N ≈ 103, 200, 000, where the observedN = 96,490,683.

Table 1. Convergence results for variant algorithm. Numbers of iterations needed to satisfy (7)
are given in the column labeled DD. The numbers in parentheses are the number of iterations
required to satisfy the actual convergence criterion used by PLTMG.

NP = 400 K NP = 600 K NP = 800 K

P N DD N DD N DD

2 625,949 10 (3) 776,381 8 (3) 1,390,124 12 (4)
4 1,189,527 13 (4) 1,790,918 11 (4) 2,288,587 9 (3)
8 1,996,139 10 (4) 2,990,807 13 (4) 3,993,126 10 (3)

16 3,569,375 14 (4) 5,220,706 13 (4) 6,920,269 12 (3)
32 6,723,697 13 (3) 9,736,798 16 (4) 13,142,670 11 (3)
64 12,978,568 11 (4) 18,905,909 14 (4) 25,326,662 11 (3)

128 25,155,124 12 (3) 37,148,571 10 (4) 48,841,965 10 (3)
256 48,874,991 11 (3) 72,902,698 14 (4) 96,490,683 11 (3)

In our second experiment we solved the same problem using the original paradigm.
On one processor, an adaptive mesh of size Nc = 50 K was created. All elements on
this mesh were linear elements. This mesh was then partitioned into P subregions,
P = 2k, 1 ≤ k ≤ 8. This coarse mesh was broadcast to P processors (simulated as
needed) and each processor continued the adaptive process in both h and p, creating
a mesh of size NP . In this experiment, NP was chosen to be 400, 600, and 800 K.
This resulted in global meshes varying in size from approximately 750 K to 189 M.
These global meshes were regularized to be h-conforming and p-conforming, and a
global DD solve was made as in the first experiment. As in the first experiment, the
usual convergence criteria was replaced by (7) in order to illustrate the dependence
of the convergence rate onN and P . The results are summarized in Table 2.

For the original paradigm the size of the global mesh is predicted by

N ≈ PNP − (P − 1)Nc. (9)

Similar to Eq. (8), Eq. (9) only predicts an upper bound, as it does not account
for refinement outside of Ωi, needed to keep the mesh conforming and for other
reasons. For example, for Nc = 50 K, NP = 800 K, P = 256, (9) predicts
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Fig. 2. The load balance (left) and solution (right) in the case NP = 800 K, P = 32.

Fig. 3. The mesh density for the global mesh (left) and for one of the local meshes (right) in
the case NP = 800 K, P = 32.

Fig. 4. The degree density for the global mesh (left) and for one of the local meshes (right) in
the case NP = 800 K, P = 32.

N ≈ 192, 050, 000 when actually N = 189, 363, 322. For the case NP = 800 K,
P = 32, the solution and the load balance is shown in Fig. 2. The mesh density and
degree density of the global mesh and one local mesh are shown in Figs. 3 and 4. As
expected, both the mesh density and the degree density are high in the local region
and much lower elsewhere in the local mesh.
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Table 2. Convergence results for original Algorithm. Numbers of iterations needed to sat-
isfy (7) are given in the column labeled DD. The numbers in parentheses are the number of
iterations required to satisfy the actual convergence criterion used by PLTMG.

NP = 400 K NP = 600 K NP = 800 K

P N DD N DD N DD

2 750,225 13 (4) 1,150,106 13 (4) 1,549,915 13 (4)
4 1,450,054 13 (4) 2,248,841 13 (4) 3,047,906 13 (4)
8 2,846,963 9 (3) 4,442,665 9 (4) 6,039,743 9 (3)

16 5,635,327 11 (4) 8,821,463 10 (4) 12,010,188 11 (4)
32 11,204,214 12 (4) 17,564,640 10 (4) 23,930,867 11 (4)
64 22,301,910 14 (4) 34,983,543 13 (4) 47,693,190 13 (4)

128 44,408,605 11 (4) 69,696,605 12 (4) 95,026,759 11 (4)
256 88,369,503 11 (3) 138,790,801 11 (3) 189,363,322 11 (4)
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