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Summary. We investigate Dirichlet–Neumann and Robin methods for a quasilinear elliptic
transmission problem in which the nonlinearity changes discontinuously across two subdo-
mains. In one space dimension, we obtain convergence theorems by extending known results
from the linear case. They hold both on the continuous and on the discrete level. From the
proofs one can infer mesh-independence of the convergence rates for the Dirichlet–Neumann
method, but not for the Robin method. In two space dimensions, we consider numerical exam-
ples which demonstrate that the theoretical results might be extended to higher dimensions.
Moreover, we investigate the asymptotic convergence behaviour for fine mesh sizes quantita-
tively. We observe a good agreement with many known linear results, which is remarkable in
view of the nonlinear character of the problem.

1 Introduction

We consider the following setting. Let Ω ⊂ Rn be a bounded Lipschitz domain
divided into two non-overlapping subdomains Ω 1, Ω2 with the interface Γ = Ω1 ∩
Ω2. The outer normal of Ω1 is denoted by n. Furthermore, let f ∈ L2(Ω) and k1,
k2 ∈ L∞(R) with ki ≥ α > 0 for i = 1, 2. In strong form the domain decomposition
problem that we aim at reads:

Find a function p in Ω, pi := p|Ωi
∈ H1(Ωi), i = 1, 2, p|∂Ω = 0, such that

− div(ki(pi)∇pi) = f on Ωi, i = 1, 2 (1)

p1 = p2 on Γ (2)

k1(p1)∇p1 · n = k2(p2)∇p2 · n on Γ . (3)

A powerful tool to treat problems of this kind is to introduce new variables u i,
i = 1, 2, by Kirchhoff transformations κi, defined by

ui(x) := κi(pi(x)) =
∫ pi(x)

0

ki(q) dq a.e. in Ωi . (4)

∗ This work was supported by the BMBF–Programm “Mathematik für Innovationen in In-
dustrie und Dienstleistungen”. We thank J. Schreiber for computational assistance.



88 H. Berninger et al.

This entails ki(pi)∇pi = ∇ui and, therefore, problem (1), (2) and (3) can be rewrit-
ten in the following form, in which the nonlinearity only appears on Γ , but now as a
discontinuity condition on the primal variable:

Find a function u in Ω, ui := u|Ωi
∈ H1(Ωi), i = 1, 2, u|∂Ω = 0, such that

−Δui = f on Ωi, i = 1, 2 (5)

κ−1
1 (u1) = κ−1

2 (u2) on Γ (6)

∇u1 · n = ∇u2 · n on Γ . (7)

In the linear case, where ki, i = 1, 2, are constant functions, Dirichlet–Neumann
and Robin methods are well-understood iteration procedures for the treatment of
non-overlapping elliptic domain decomposition problems, see, e.g., [ 7, 8, 10]. We
introduce nonlinear versions of these methods applied to ( 5), (6) and (7) without
using linearization. In one space dimension, both on the continuous and on the dis-
crete level, we obtain convergence results by extending approaches used in the linear
case, see [1]. We also obtain mesh-independent convergence rates for the damped
Dirichlet–Neumann method, but not for the Robin method, just as in the linear case.
However, these generalizations of the convergence proofs for the linear setting do
not work in dimensions higher than one. Therefore, we investigate the qualitative
and quantitative convergence properties in 2D numerically.

Concerning the nonlinear Dirichlet–Neumann method, we observe asymptoti-
cally mesh-independent optimal convergence rates for a certain mesh-independent
optimal damping parameter. Moreover, if the nonlinearities k 1 and k2 are of different
orders of magnitude, the Dirichlet–Neumann method converges considerably faster
than if they are of the same order of magnitude. Strangely enough, this observation
can be made plausible by investigations that have been carried out on corresponding
settings for the Robin method in the linear case, see [5].

As to the nonlinear Robin method, we observe degenerating optimal convergence
rates and parameters if the two Robin parameters involved in the method coincide.
What is more, we can even establish formulas, which quantitatively describe the
asymptotic behaviour of this degeneracy, and which are very similar to the ones, that
have been discovered for the Robin method applied to the linear case, cf. [ 9]. Re-
sults from the theory of optimized Schwarz methods in linear cases (see, e.g., [ 7])
show, that the convergence speed can be further increased by allowing the two Robin
parameters to be different. Indeed, we obtain a better asymptotic behaviour for our
test cases if we choose the parameters independently from each other. Finally, if the
nonlinearities k1 and k2 are of different orders of magnitude, the optimized Robin
method with different parameters converges quite fast with mesh-independent con-
vergence rates, which, again, reproduces the linear situation as considered in [ 5].

Altogether, the observations we make in our nonlinear numerical examples, re-
semble strikingly well the proved results for linear cases.
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2 Transmission Problem with Jumping Nonlinearities

In this section, we introduce some further notation (cf. [ 10]) and give a weak for-
mulation of problem (5), (6) and (7). Then, we point out the equivalence of it with
Steklov–Poincaré interface equations (cf. [3]).

In addition to the notation and definitions above, we introduce the spaces

Vi := {vi ∈ H1(Ωi) | vi|∂Ω∩∂Ωi
= 0}, V 0

i := H1
0 (Ωi), Λ := H

1/2
00 (Γ )

and for wi, vi ∈ Vi the form ai(wi, vi) := (∇wi,∇vi)Ωi , where (·, ·)Ωi stands for
the L2 inner product on Ωi. The norm in Λ will be denoted by ‖ · ‖Λ.

Let Ri, i = 1, 2, be any continuous extension operator from Λ to V i. Then the
variational formulation of problem (5), (6) and (7) reads as follows:

Find ui ∈ Vi, i = 1, 2, such that

ai(ui, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (8)

κ−1
1 (u1|Γ ) = κ−1

2 (u2|Γ ) in Λ (9)

a1(u1, R1μ)− (f,R1μ)Ω1 = −a2(u2, R2μ) + (f,R2μ)Ω2 ∀μ ∈ Λ . (10)

For details concerning the Kirchhoff transformations in the weak sense in ( 9),
i.e., in the sense of superposition operators on H 1(Ωi), see [2], where one can also
find a proof of

Proposition 1. The weak form of problem (1), (2) and (3) is equivalent to (8), (9)
and (10).

Now, for a given λ ∈ Λ (and omitting brackets for operators applied to λ from
now on), we consider the harmonic extensionsH i(κiλ) ∈ Vi of the Dirichlet bound-
ary value κiλ onΓ for i = 1, 2.With these operators and denoting by 〈·, ·〉 the duality
pairing betweenΛ′ andΛ, we recall that the Steklov–Poincaré operatorsS i : Λ→ Λ′

are defined by

〈Siη, μ〉 = ai(Hiη,Hiμ) ∀η, μ ∈ Λ , i = 1, 2 .

Furthermore, let Gif be the solutions of the subproblems (8) with homogeneous
Dirichlet data (Gif)|∂Ωi

= 0. We define the functional χ = χ1 + χ2 ∈ Λ′ by

〈χi, μ〉 = (f,Hiμ)Ωi − ai(Gif,Hiμ) ∀μ ∈ Λ , i = 1, 2 .

Proposition 2. By (4) and the relation

ui = Hiκiλ+ Gif , i = 1, 2 ,

between λ and ui as well as with λ2 = κ2λ, problem (8), (9) and (10) is equivalent
to each of the two Steklov–Poincaré interface equations

find λ ∈ Λ : (S1κ1 + S2κ2)λ = χ , (11)

find λ2 ∈ Λ : (S1κ1κ
−1
2 + S2)λ2 = χ . (12)
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3 Nonlinear Dirichlet–Neumann and Robin Methods

In this section, we note the nonlinear Dirichlet–Neumann and Robin methods that
we apply to (8), (9) and (10) in weak forms. We give Steklov–Poincaré formulations
of the methods and convergence results in 1D generalizing linear theory.

3.1 The Methods and Their Steklov–Poincaré Formulations

The nonlinear Dirichlet–Neumann method applied to problem ( 8), (9) and (10) reads:
Given λ0

2 ∈ Λ, find uk+1
1 ∈ V1 and uk+1

2 ∈ V2 for each k ≥ 0 such that

a1(uk+1
1 , v1) = (f, v1)Ω1 ∀v1 ∈ V 0

1 (13)

uk+1
1|Γ = κ1κ

−1
2 (λk2) in Λ (14)

and then
a2(uk+1

2 , v2) = (f, v2)Ω2 ∀v2 ∈ V 0
2 (15)

a2(uk+1
2 , H2μ)− (f,H2μ)Ω2 = −a1(uk+1

1 , H1μ) + (f,H1μ)Ω1 ∀μ ∈ Λ . (16)

Then, with some damping parameter θ ∈ (0, 1), the new iterate is defined by

λk+1
2 := θ uk+1

2|Γ + (1 − θ)λk2 . (17)

For the analysis (cf. [1, Sect. 3.3.2/3]), it is necessary to carry out the damping in
the transformed space and to have a linear preconditioner in

Proposition 3. The Dirichlet–Neumann method (13), (14), (15), (16) and (17) ap-
plied to problem (8), (9) and (10) is a preconditioned Richardson procedure for
Eq. (12) with S2 as a preconditioner. The iteration is given by Tθ : Λ → Λ defined
as

Tθ : λk2 �→ λk+1
2 = λk2 + θS−1

2 (χ− (S1κ1κ
−1
2 + S2)λk2) . (18)

In contrast to the Dirichlet–Neumann method, the Robin iteration is related to the
symmetric equation (11), and it comes with two acceleration parameters γ1, γ2 > 0
rather than one. For problem (8), (9) and (10) it reads:

Given a u0
2 ∈ V2 find uk+1

1 ∈ V1 and uk+2
2 ∈ V2 for k ≥ 0 such that

a1(uk+1
1 , v1) = (f, v1)Ω1 ∀v1 ∈ V 0

1 (19)

a1(uk+1
1 , R1μ)− (f,R1μ)Ω1 + γ1(κ−1

1 uk+1
1 , μ)Γ =

− a2(uk2 , R2μ) + (f,R2μ)Ω2 + γ1(κ−1
2 uk2 , μ)Γ ∀μ ∈ Λ (20)

and then
a2(uk+1

2 , v2) = (f, v2)Ω2 ∀v2 ∈ V 0
2 (21)

a2(uk+1
2 , R2μ)− (f,R2μ)Ω1 + γ2(κ−1

2 uk+1
2 , μ)Γ =

− a1(uk+1
1 , R1μ) + (f,R1μ)Ω1 + γ2(κ−1

1 uk+1
1 , μ)Γ ∀μ ∈ Λ . (22)
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With the notation

〈Iη, μ〉 = (η, μ)Γ ∀η, μ ∈ Λ .

we obtain the following formulation of the Robin method in terms of Steklov–
Poincaré operators (cf. [1, Sect. 3.4.2]), generalizing linear theory in [4, Sect. 5.4].

Proposition 4. The Robin iteration (19)–(22) applied to (8)–(10) is equivalent to the
Alternating Direction Iterative (ADI) method applied to ( 11). With a given λ0

2 ∈ Λ
the operator Tγ1,γ2 : Λ → Λ , Tγ1,γ2 : λk2 �→ λk+1

2 provided the ADI method is
given by

λk+1
2 = (γ2I+S2κ2)−1(χ+(γ2I−S1κ1)(γ1I+S1κ1)−1(χ+(γ1I−S2κ2)λk2)) .

3.2 Convergence Results

The approach for proving convergence is as follows, cf. [ 1]. First, note that a fixed
point λ of the iterative scheme in Proposition 3 or 4 is a solution of (12) or (11),
respectively. Secondly, convergence proofs for linear cases can be extended so that
Banach’s fixed point theorem can be applied to Tθ and Tγ1,γ2 .

We give sufficient conditions for convergence which are almost the same for
both methods. In case of the Dirichlet–Neumann method they entail that T θ is a
contraction if θ is small enough, so that we obtain mesh-independent convergence
rates. This is not provided by the convergence proof for the Robin method, and, even
in linear cases, it is not true for the Robin iteration.

Generalizing [10, pp. 118/9] for the Dirichlet–Neumann method, we obtain

Theorem 1. Let β2 be the Lipschitz and α2 be the coercivity constant of S2. Let
S1κ1κ

−1
2 be Lipschitz continuous with Lipschitz constant β1 and strongly monotone

with monotonicity constant α1. Then (12) has a unique solution λ2 ∈ Λ. Further-
more, for any given λ0

2 ∈ Λ and any θ ∈ (0, θmax) with θmax as in (23) the sequence
given by (18) converges in Λ to λ2. Theoretically optimal (i.e., minimal) convergence
rates ρopt for corresponding optimal damping parameters θopt are given by

θopt =
θmax

2
=

α1 + α2

(β1 + β2)2
· α

2
2

β2
and ρ2

opt = 1−
(
α1 + α2

β1 + β2

)2

·
(
α2

β2

)2

. (23)

Theorem 2. The assumptions in Theorem 1 are satisfied in 1D.

We do not know whether the assertion of Theorem 1 is true for higher dimen-
sions. We remark, however, that there are operators S1κ1κ

−1
2 : Λ → Λ′ in 2D, that

are not monotone, see [1, Sect. 3.3.4].

Theorem 3. We assume that the problems in (8) and (10) are discretized by piecewise
linear finite elements and that in (9) piecewise linear interpolation is applied to the
function after having been Kirchhoff–transformed at the nodes of the interface. Then
Theorem 1 can also be applied to this discretization with the same constants and,
thus, leads to mesh-independent optimal convergence rates and optimal damping
parameters.
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For proving convergence of the Robin method (generalizing the linear result in
[4, pp. 99/100]) we need S1κ1, S2κ2 : Λ → Λ′ to be Lipschitz continuous and
strongly monotone, which, by Theorem 2, is satisfied in 1D.

Theorem 4. Let γ1 = γ2 = γ > 0 and Ω ⊂ R. Then for any initial iterate λ0
2 ∈

Λ the operator Tγ = Tγ1,γ2 in Proposition 4 provides a sequence (λk2)k≥0 which
converges in Λ to the unique fixed point of Tγ . Moreover, the sequence (uki )k≥1,
i = 1, 2, of Robin iterates converges to the solution of (8), (9) and (10).

For the discretization of problem (8), (9) and (10) in Theorem 3 the correspond-
ing discrete version of the Robin method converges to the discrete solution.

4 Parameter Studies for the Dirichlet–Neumann Method

The purpose of this section is to apply our nonlinear Dirichlet–Neumann method
(13), (14), (15), (16) and (17) to two concretely specified cases of the transmission
problem in two space dimensions, discretized as in Theorem 3. After a detailed de-
scription of these two examples we present the numerical results which we discuss
and compare to the linear case.

We consider problem (1), (2) and (3) on the unit Yin Yang domain Ω within
a circle of radius 1 as shown in Fig. 1, with the coarse grid. We denote the white
subdomain together with the grey circle B1 by Ω1 and the grey subdomain with the
white circleB2 byΩ2. Furthermore, we select data f onΩ with f |Bi

= fi vanishing
outside B1 ∪B2 and nonlinearities

ki(pi) =

{
Ki pb,imax{(−pi)−3λi−2, c} for pi ≤ −1

1 for pi ≥ −1

with parametersKi, pb,i, λi specified in Tables 1 and 2. The ellipticity constant c > 0
is supposed to enforce convergence.

Our choice represents a nondegenerate stationary Richards equation without
gravity on Ω1 and Ω2 containing two different soil types. f1 and f2 can be regarded
as a source and a sink. In Case I, which we call mildly heterogeneous, we only al-
ter one soil parameter λ1 �= λ2 and choose pb,i = −1.0 and Ki = 2.0 · 10−3 in
both subdomains Ωi as well as c = 0.1. In Case II, which we refer to as strongly
heterogeneous, we change all parameters and use c = 0.01.

Starting with the coarse grid (level 1), we apply uniform refinement in order to
obtain finer meshes, i.e., higher (refinement) levels. We discretize (8), (9) and (10)
as described in Theorem 3. Figures 2 and 3 show the solutions p onΩ for the mildly

fi λi

i = 1 1.0 0.1

i = 2 −1.0 1.0

Table 1. Case I.

fi λi pb,i Ki

i = 1 5.0 · 10−5 0.165 −0.373 1.67 · 10−7

i = 2 −2.5 · 10−3 0.694 −0.0726 6.54 · 10−5

Table 2. Case II.
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Fig. 1. Yin Yang domain Ω.
Fig. 2. Solution p on Ω in

Case I (mildly heterogeneous).

Fig. 3. Solution p on Ω in
Case II (strongly heterogeneous).
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Fig. 4. ρ vs. θ on levels 1 (rightmost
curve) to 6 (leftmost curve) in Case I.

and the strongly heterogeneous case, respectively. The crater-like parts of the graphs
(indicated by a black line in Fig. 2) correspond to the nonlinear (hydrologically, the
unsaturated) regime of the equation.
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Fig. 5. θopt vs. level in Case II.
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Fig. 6. ρopt vs. level in Case II.
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For Case I, Fig. 4 shows average convergence rates ρ of the Dirichlet–Neumann
method with respect to the damping parameter θ on the first six levels, from the
rightmost curve representing the first level to the leftmost curve corresponding to the
6th level. The convergence rates are measured in the energy norm for the transformed
variables. Starting with the initial iterates u0

i = 0, i = 1, 2, the Dirichlet–Neumann
iteration is stopped when the relative error is below 10−12. Each of the local prob-
lems on the subdomains is solved by 50 iterations of a linear multigrid which leads
to numerically exact solutions. For the implementation we used the numerics envi-
ronment DUNE [6].

Figure 4 shows that, as on the continuous level in Theorem 1, one obtains con-
vergence if the damping parameter θ ∈ (0, 1) is below a threshold θmax, and one
observes optimal convergence rates ρopt for a certain θopt. Both the threshold and the
optimal parameter as well as the corresponding optimal rates are level-dependent –
however, these values seem to stabilize for higher levels. Concretely, the damping
parameter θopt ≈ 0.17 leads to the optimal convergence rates ρopt ≈ 0.77 on levels
5, 6 and 7. This indicates that mesh-independence is obtained in this 2D-case as was
proved for 1D-cases (Theorem 3) and is known in linear settings (see [10, pp. 122–
128]). Finally, we have the relationship ρopt ≈ 1− 7

5 θopt on all levels 1 to 7, which
reflects (23).

In principle, the situation for Case II is the same as for Case I, see Figs. 5
and 6. Again, optimal convergence rates corresponding to optimal damping parame-
ters seem to stabilize asymptotically for high levels, but now we need considerably
less damping θopt ≈ 0.85 for much better optimal rates ρopt ≈ 0.15 (on levels 5, 6
and 7) than in Case I. In addition, even for overrelaxation, i.e. for parameters θ > 1,
convergence can be observed (concretely, we obtain θ opt = θmax/2 as in (23)). In
contrast to Case I, the convergence rates remain stable even if we choose a much
smaller c > 0, e.g., c = 10−100.

A possible reason for this considerably improved convergence behaviour of the
Dirichlet–Neumann method might be the big jumps of the diffusion coefficients K 1

and K2 in Case II. Surprisingly, the numerical results in the next section, where we
present the convergence behaviour of the nonlinear Robin method for the two test
cases, will shed some light on this phenomenon, again supported by linear theory.
Here, we want to discuss this issue heuristically, regardless of the linear or nonlinear
nature of the problem, by considering the corresponding constants in Theorem 1.
Motivated by K1 � K2 in Table 2, we assume that α2 � β2 have the same order of
magnitude which is “big” compared to α1 � β1. Then, considering (23), we estimate
roughly

ρopt =
√

1− α1 + α2

β2
θopt � 1− 1

2
θopt .

(Compare this to the striking relationship ρopt = 1−θopt obtained for levels 1 to 7 in
Figs. 5 and 6.) With the same arguments, we find that θopt has the order of magnitude
of 1 in this case, whereas it has the order of magnitude of α1/β2 if we exchange the
Dirichlet-subdomain Ω1 and the Neumann-subdomain Ω2. Indeed, here, we only
observe convergence for very small damping parameters in Case II, whereas we do
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hardly see any change in Case I. Also, the convergence rates are very bad for Case II
after exchanging domains. This, however, cannot be inferred from the formula in
(23), but by numerical stability: One can argue that the smaller K 1 is, the better
the Dirichlet problem is conditioned on Ω1 (with respect to the Dirichlet value),
and the bigger K2 is, the better the Neumann problem is conditioned on Ω2 (with
respect to the Neumann value). For more illuminating theory on linear cases with
discontinuous coefficients, which confirms some of our findings in Case II, consult
[5, p. 97]. Altogether, in such asymmetric cases, the asymmetry of the Dirichlet–
Neumann method reveals itself dramatically.

5 Parameter Studies for the Robin Method

In this last section, we present numerical results obtained by applying the nonlinear
Robin method (19)–(22) to the test cases introduced in Sect. 4. For both cases, we
first consider the Robin method with one Robin parameter γ = γ1 = γ2, for which
our convergence result (Theorem 4) in 1D is valid, and secondly, we investigate the
situation with different γ1 and γ2. In contrast to the Dirichlet–Neumann method, each
subproblem (19)–(20) and (21)–(22) in the Robin iteration is nonlinear. We solve
these local problems by a monotone multigrid method, see [ 1, Sect. 3.4.5]. The latter
is stopped if the relative error of succeeding iterates in the energy norm drops below
10−12. Otherwise, we use the same stopping criterion and average convergence rates
as for the Dirichlet–Neumann method above.

Using the Robin iteration with γ = γ1 = γ2, we find that the numerical results
of the two cases are virtually the same. Therefore, we only present Case II here. As
one can see in Fig. 7, there are certain ranges for the Robin parameter γ on each
level 1–6, where convergence rates are bounded away from 1. This is remarkable
since Theorem 4 guarantees convergence for all γ > 0 in 1D. Furthermore – as for
the Dirichlet–Neumann method – there is an optimal convergence rate ρ opt obtained
for an optimal γopt on each level. However – in contrast to the Dirichlet–Neumann
method – these optimal rates and the corresponding parameters seem to degenerate
rather than become asymptotically mesh-independent. The situation in Case I is al-
most the same as in Case II. However, the range of Robin parameters, for which an
acceptable convergence speed is observed in the numerics, is about 10 4 times bigger
than in Case II. Thus, a good choice of γ seems to be correlated to the factor in front
of the Laplacian (compare (20)), which is by some orders of magnitude bigger in
Case I than in Case II.

In convergence proofs for the Robin method on the continuous level, as in the
original [8], one usually does not derive convergence rates (compare Sect. 3.2). This
is because, usually, they are just not available. On the contrary, degeneracy of con-
vergence rates is observed and proved on the discrete level for fine mesh sizes. In
the world of optimized Schwarz methods, the latter can even be formulated quanti-
tatively in form of asymptotic convergence results. For example, in linear cases the
asymptotic behaviour

γlinopt = O(h−1/2) and ρlinopt = 1−O(h1/2) (24)
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Fig. 7. ρ vs. γ on levels 1 (leftmost)
to 6 (rightmost) for γ1 = γ2 in Case II
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Fig. 8. ρopt vs. level for
γ1 �= γ2 in Case II

of the optimal parameters and convergence rates with respect to the mesh size h is
known for quite general domains, see [9]. Now, if we investigate the asymptotics of
the optimal parameters and rates in the nonlinear case II, displayed in Fig. 7, with
respect to h, we find

γopt = O(h−0.45) and ρopt = 1−O(h0.44) . (25)

Thus, we do not only observe an asymptotic behaviour of a similar kind as in the
linear case, but even with similar exponents. The situation for Case I is virtually the
same.

The convergence speed of the Robin method can be further increased by allow-
ing the Robin parameters γ1 and γ2 to be different. We have carried out extensive
numerical parameter studies for the performance of the nonlinear Robin method in
both our cases on levels 1–8. Figures 9 and 10 shall serve as examples of the results
we obtained on the 4th level in Case I (with 34,000 parameter pairs) and in Case II
(with 77,000 parameter pairs), respectively. First of all, in both graphics, which con-
tain the case γ = γ1 = γ2 on the diagonal, one can clearly see that the convergence
speed can be increased by an appropriate choice of different Robin parameters.

Now, however, the situations in Case I and in Case II are completely different. We
start by considering Case I, where the slopes of the nonlinearities in the subdomains
are different but not their order of magnitude. Here, we observe that the convergence
rates are nearly symmetric with respect to the diagonal γ1 = γ2 and that two lo-
cal minima occur off the diagonal – a left (asymptotically global) one and a right
one in Fig. 9. Although the convergence speed can be increased by choosing differ-
ent instead of equal Robin parameters, asymptotically we still obtain degenerating
optimal parameters and rates. However, we observe a weaker mesh-dependence of
the convergence rates than for γ1 = γ2 in (25). Concretely, we find the asymptotic
behaviour

γ1,opt = O(h−0.37) , γ2,opt = O(h−0.55) and ρopt = 1−O(h0.34) (26)

for the left minima and a similar one for the right minima.
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Fig. 9. ρ vs. γ1 (x-axis) and
γ2 (y-axis) on level 4 for Case I.
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Fig. 10. ρ vs. γ1 (x-axis) and
γ2 (y-axis) on level 4 for Case II.

As before in (24), our observations (26) in the nonlinear case I can be compared
to known results from the linear theory of optimized Schwarz methods. In [ 7, p. 17]
the asymptotic behaviour of different optimized Robin parameters and corresponding
convergence rates has been derived for a linear equation on R 2 decomposed into two
half planes. The asymptotics is given by the formulas

γlin1,opt = O(h−1/4) , γlin2,opt = O(h−1/4) and ρlinopt = 1−O(h1/4) . (27)

A comparison with (27) shows that, quantitatively, the asymptotic behaviour of the
different optimal Robin parameters in (26) does not seem to follow the linear results.
Also, we do not obtain the same degree of acceleration of the convergence speed in
(26) as suggested by the linear case. However, we observe a similar kind of asymp-
totic behaviour for ρopt and, at least, the asymptotics lies between the situations (24)
and (27).

In contrast to Case I, the situation in Case II is very unsymmetric with respect
to the diagonal γ1 = γ2, and we do no longer observe two distinct local minima
of convergence rates. We rather have a whole strip of parameter pairs, where one
parameter γ2 is more or less fixed while the other γ1 is free (as long as it is big
enough), in which nearly constant globally minimal rates occur. Even for the global
minimum, which is not distinct, one observes a difference in order of magnitude of
at least γ1,opt ≈ 104 γ2,opt on levels 1–8. Most importantly, however, the globally
minimal rates in the strip are asymptotically stable, i.e., mesh-independent. This can
be seen in Fig. 8, where the value for the 7th level is the same as for the 8th level.
Note that with extreme values γ1,opt � γ2,opt subproblems (19)–(20) and (21)–(22)
resemble Dirichlet and Neumann problems, respectively, i.e. the Robin method be-
comes an undamped Dirichlet–Neumann method. This observation is quite striking
if we compare Fig. 8 for the optimized Robin method with two different parameters
with Fig. 6, which shows the optimal convergence rates for the damped Dirichlet–
Neumann method.
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We close this section by mentioning a known result on the Robin method applied
to a linear equation with discontinuous coefficients K1/K2 < 1 in R2, decomposed
into two half planes, see [5, p. 84]. The asymptotic behaviour in this case is given by

γlin1,opt = O(1) , γlin2,opt = O(h−1) and ρlinopt =
K1

K2
−O(h1/2) .

Although, again, we cannot confirm the asymptotic behaviour for the optimized
Robin parameters in our Case II, this rare result of a mesh-independent convergence
rate for the Robin method makes our findings in this and in the previous section on
the good convergence of our optimized methods in Case II a bit more understandable.
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