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1 Introduction

We are interested here in the numerical modeling of time-harmonic electromagnetic
wave propagation problems in irregularly shaped domains and heterogeneous media.
In this context, we are naturally led to consider volume discretization methods (i.e.
finite element method) as opposed to surface discretization methods (i.e. boundary
element method). Most of the related existing work deals with the second order form
of the time-harmonic Maxwell equations discretized by a conforming finite element
method [14]. More recently, discontinuous Galerkin (DG) methods have also been
considered for this purpose. While the DG method keeps almost all the advantages
of a conforming finite element method (large spectrum of applications, complex ge-
ometries, etc.), the DG method has other nice properties which explain the renewed
interest it gains in various domains in scientific computing: easy extension to higher
order interpolation (one may increase the degree of the polynomials in the whole
mesh as easily as for spectral methods and this can also be done locally), no global
mass matrix to invert when solving time-domain systems of partial differential equa-
tions using an explicit time discretization scheme, easy handling of complex meshes
(the mesh may be a classical conforming finite element mesh, a non-conforming one
or even a mesh made of various types of elements), natural treatment of discontin-
uous solutions and coefficient heterogeneities and nice parallelization properties. In
this paper, the first order form of the time-harmonic Maxwell equations is discretized
using a high order DG method formulated on unstructured simplicial meshes.

Domain decomposition (DD) methods are flexible and powerful techniques for
the parallel numerical solution of systems of partial differential equations. Their ap-
plication to time-harmonic wave propagation problems began with a first algorithm
proposed in [4] for solving the Helmholtz equation, and then was extended and
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generalized for the time-harmonic Maxwell equations in [ 1, 3, 5]. A classical DD
strategy which takes the form of a Schwarz algorithm where Després type conditions
are imposed at the interfaces between neighboring subdomains was adopted in our
previous work [8]. These conditions actually translate into a continuity condition for
the incoming characteristic variables in the case of the first order Maxwell system. A
similar approach (using Robin transmission conditions) but applied to a second order
form of the Maxwell system, and in conjunction with a non-conforming finite ele-
ment discretization, is presented in [13, 18]. The analysis of a larger class of Schwarz
algorithms has been performed recently in [7] where optimized transmission condi-
tions are used. The latter extends the idea of the most general, optimized interface
conditions designed for the Helmholtz problem in [12].

In this paper, we consider classical and optimized Schwarz algorithms studied
in [7], in conjunction with high order DG methods [6] formulated on unstructured
simplicial meshes, for the solution of the time-harmonic Maxwell equations. The
rest of this paper is organized as follows. In Sect. 2, we formulate the continuous
boundary value problem to be solved. Then, in Sect. 3, the adopted Schwarz DD
method is introduced. Section 4 is devoted to the discretization of the global and do-
main decomposed boundary value problems. Finally, in Sect. 5, numerical strategies
for solving local problems as well as parallel computing aspects are discussed and
experimental results are presented.

2 Continuous Problem

The system of normalized time-harmonic Maxwell’s equations is given by:

iωεrE− curlH = −J, iωμrH + curlE = 0, (1)

where E and H are the unknown electric and magnetic fields and J is a known
current source; εr and μr respectively denote the relative electric permittivity and the
relative magnetic permeability; we consider here the case of linear isotropic media.
The angular frequency of the problem is given by ω. Equations ( 1) are solved in
a bounded domain Ω. On the boundary ∂Ω = Γa ∪ Γm, the following boundary
conditions are imposed:

– a perfect electric conductor (PEC) condition on Γm : n×E = 0,

– a first order absorbing condition on Γa : L(E,H) = L(Einc,Hinc),
(2)

where L(E,H) = n×E−Zn× (H×n) with Z =
√
μr/εr. The vectors Einc and

Hinc represent the components of an incident electromagnetic wave and n denotes
the unit outward normal. Equations (1) and (2) can be further rewritten (assuming J
equals to 0 to simplify the presentation) in the form:⎧⎪⎨⎪⎩

iωG0W +Gx∂xW +Gy∂yW +Gz∂zW = 0 in Ω,

(MΓm −Gn)W = 0 on Γm,

(MΓa −Gn)(W −Winc) = 0 on Γa,

(3)
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where W = (E,H)T is the new unknown vector and:

G0 =
(
εr I3 03

03 μr I3

)
, Gl =

(
03 Nel

NT
el 03

)
, Nv =

⎛⎝ 0 vz −vy
−vz 0 vx
vy −vx 0

⎞⎠ ,

with the index set l ∈ {x, y, z} for Gl and where (ex, ey, ez) is the canonical basis
of R3 and v = (vx, vy, vz)T . The term I3 denotes the identity matrix, and 03 the
null matrix, both of dimension 3 × 3. The real part of G0 is symmetric positive
definite and its imaginary part, which appears for instance in the case of conductive
materials, is symmetric negative definite. In the following we denote by Gn the sum
Gxnx +Gyny +Gznz and by G+

n andG−
n its positive and negative parts.1 We also

define |Gn|= G+
n −G−

n . In order to take into account the boundary conditions, the
matrices MΓm and MΓa are given:

MΓm =
(

03 Nn

−NT
n 03

)
and MΓa = |Gn|.

3 A Family of Schwarz DD Algorithms

We assume that the domainΩ is decomposed intoNs subdomainsΩ =
⋃Ns

i=1Ωi and
let Γij = ∂Ωi∩Ωj . In the following, a superscript i indicates that some notations are
relative to the subdomain Ωi and not to the whole domain Ω. We denote by n ij the
unit outward normal vector to the interface Γ ij . We consider a family of Schwarz DD
algorithms for solving the problem (3), given by (n denotes the Schwarz iteration):⎧⎪⎪⎪⎨⎪⎪⎪⎩

iωG0Wi,n+1 +
∑

l∈{x,y,z}
Gl∂lWi,n+1 = 0 in Ωi,

BnijW
i,n+1 = BnijW

j,n on Γij ,

+ B.C. on ∂Ωi ∩ ∂Ω,

(4)

where the Bnij
are interface operators. Such algorithms have been studied in detail

in [7] with the aim of designing optimized overlapping and non-overlapping Schwarz
methods for both the time-domain and time-harmonic Maxwell equations. Here, we
consider the following situations:

• the classical Schwarz algorithm (for 2D and 3D problems) in whichBnij
≡ G−

nij
,

• an optimized Schwarz algorithm (for 2D problems only) characterized byB nij ≡
G−

nij
+ SiG−

nji
with Si = αi = (iω̃)−1[p(1− i)] where ω̃ = ω

√
εμ.

The optimized Schwarz algorithm selected in this study corresponds to one of sev-
eral variants proposed and analyzed in [7]. In particular, in the case of a two-

subdomain non-overlapping decomposition, a good choice is p =
√
CC

1
4
ω̃√

2
√
h

, which

1 If TΛT−1 is the eigendecomposition ofGn, thenG±
n = TΛ±T−1 whereΛ+ (respectively

Λ−) only gathers the positive (respectively negative) eigenvalues.
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leads to the asymptotic convergence factor ρ = 1 −
√

2C
1
4

ω̃√
C

√
h (while ρ = 1 for

the classical Schwarz algorithm in this configuration) where C is a constant and
Cω̃ = min(k2

+ − ω̃2, ω̃2 − k2
−) (k− and k+ are frequency parameters, see [7] for

more details). Preliminary results on the use of this optimized Schwarz algorithm in
conjunction with a high order DG method were presented in [ 9].

4 Discretization by a High Order DG Method

The subproblems of the Schwarz algorithm (4) are discretized using a DG formula-
tion. In this section, we first introduce this discretization method in the one-domain
case. Then we establish the discretization of the interface condition of algorithm ( 4)
with respect to the adopted DG formulation. Let Ωh denote a discretization of the
domain Ω into a union of conforming simplicial elements K . We look for the ap-
proximate solution Wh of (3) in Vh × Vh where the functional space Vh is defined
by Vh =

{
U ∈ [L2(Ω)]3 / ∀K ∈ Ωh, U|K ∈ Pp(K)

}
, where Pp(K) denotes a

space of vectors with polynomial components of degree at most p over the element
K .

4.1 Discretization of the Monodomain Problem

The DG discretization of system (3) yields the formulation of the discrete problem
which aims at finding Wh in Vh × Vh such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

(iωG0Wh)
T Vdv +

∑
K∈Ωh

∫
K

⎛⎝ ∑
l∈{x,y,z}

Gl∂l(Wh)

⎞⎠T

Vdv

+
∑

F∈Γm∪Γa

∫
F

(
1
2
(MF,K − IFKGnF

)Wh

)T
Vds

−
∑
F∈Γ 0

∫
F

(GnF [[Wh ]])T {V}ds+
∑
F∈Γ 0

∫
F

(SF [[Wh ]])T [[V ]]ds

=
∑
F∈Γa

∫
F

(
1
2
(MF,K − IFKGnF

)Winc

)T
Vds, ∀V ∈ Vh × Vh,

(5)

where Γ 0, Γ a and Γm respectively denote the set of interior (triangular) faces, the
set of faces on Γa and the set of faces on Γm. The unitary normal associated with
the oriented face F is nF and IFK stands for the incidence matrix between oriented
faces and elements whose entries are equal to 0 if the face F does not belong to
element K , 1 if F ∈ K and their orientations match, and –1 if F ∈ K and their
orientations do not match. For F = ∂K ∩ ∂K̃, we also define [[V ]] = IFKV|K +

IFK̃V|K̃ and {V} = 1
2

(
V|K + V|K̃

)
. Finally, the matrixSF , which is hermitian
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positive definite, permits us to penalize the jump of a field or of some components
of this field on the face F , and the matrix MF,K , to be defined later, insures the
asymptotic consistency with the boundary conditions of the continuous problem.
Problem (5) is often interpreted in terms of local problems in each elementK ofΩh

coupled by the introduction of an element boundary term called the numerical flux
(see also [10]). In this study, we consider two classical numerical fluxes, which lead
to distinct definitions for matrices SF and MF,K :

– a centered flux (see [11] for the time-domain equivalent):

SF = 0 and MF,K =

⎧⎪⎨⎪⎩ IFK

(
03 NnF

−NT
nF

03

)
if F ∈ Γm,

|GnF
| if F ∈ Γ a.

(6)

– an upwind flux (see [10, 15]):

SF =
1
2

(
NnF

NT
nF

03

03 NT
nF
NnF

)
,

MF,K =

⎧⎪⎪⎨⎪⎪⎩
(1

2
NnFN

T
nF

IFKNnF

−IFKNT
nF

03

)
if ∈ Γm,

|GnF
| if F ∈ Γ a.

(7)

Remark 1. The formulation of the DG scheme above (in particular, the centered
and upwind fluxes) actually applies to homogeneous materials. For describing the

flux in the inhomogeneous case, let us define ZK =
√

μK

εK = 1
Y K , ZF =

ZK+ZK̃

2 and Y F = YK+Y K̃

2 where F = K ∩ K̃ . With these definitions, the DG
scheme in the inhomogeneous case can be written formally as ( 5) but by modifying
SF also as:

SF =
1
2

⎛⎜⎝ 1
ZF

NnFN
T
nF

03

03
1
Y F

NT
nF
NnF

⎞⎟⎠ , (8)

and by using for the average a weighted average {·}F for each face F :

{V}F =
1
2

⎛⎜⎜⎝
⎛⎜⎜⎝
ZK̃

ZF
03

03
Y K̃

Y F

⎞⎟⎟⎠V|K +

⎛⎜⎝ZK

ZF
03

03
Y K

Y F

⎞⎟⎠V|K̃

⎞⎟⎟⎠ . (9)

4.2 Discretization of the DD Algorithm

DG Formulation of the Multi-Domain Problem

Let Γ ij denote the set of faces which belongs to Γij = ∂Ωi ∩ Ωj . According to
algorithm (4), the interface condition on Γij is given by:
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Bnij
(Wi,n+1 −Wj,n) = 0 for all F belonging to Γ ij , (10)

which is taken into account in a weak sense in the context of the DG formulation
described in Sect. 4.1. Then the DG discretization of a local problem of algorithm
(4) can be written using (5) as:{

Find Wi,n+1
h in V ih × V ih such that:

ai(Wi,n+1
h ,V) + bi(Wi,n+1

h ,V) = f ih, ∀V ∈ V ih × V ih ,
(11)

with:

ai(Wi,n+1
h ,V) =

∫
Ωi

h

(
iωG0W

i,n+1
h

)T
Vdv

+
∑
K∈Ωi

h

∫
K

⎛⎝ ∑
l∈{x,y,z}

Gl∂l(W
i,n+1
h )

⎞⎠T

Vdv,

bi(Wi,n+1
h ,V) =

∑
F∈Γm,i

∫
F

(
1
2
(MF,K − IFKGnF

)Wi,n+1
h

)T
Vds

+
∑

F∈Γa,i

∫
F

(
IFKG

−
nF

Wi,n+1
h

)T
Vds+

∑
F∈Γ ij

∫
F

(
IFKBnF Wi,n+1

h

)T
Vds

+
∑

F∈Γ 0,i

∫
F

[(
SF [[Wi,n+1

h ]]
)T

[[V ]]−
(
GnF [[Wi,n+1

h ]]
)T
{V}

]
ds,

f ih =
∑

F∈Γa,i

∫
F

(
IFKG

−
nF

Winc
)T

Vds+
∑
F∈Γ ij

∫
F

(
IFKBnF

Wj,n
h

)T
Vds.

We note that the proposed numerical treatment of the interface condition ( 10)
(see the boundary integral terms on Γ ij in the expressions for bi and f ih) is only valid
for the classical interface condition or for a zero-order optimized interface condition
such as the one selected in this study.

Formulation of an Interface System

In the two-domain case the Schwarz algorithm can be written formally as:⎧⎨⎩LW1,n+1 = f1, in Ω1,
Bn12W

1,n+1 = λ1,n, on Γ12,
+ B.C. on ∂Ω1 ∩ ∂Ω,

⎧⎨⎩LW2,n+1 = f2, in Ω2,
Bn21W

2,n+1 = λ2,n, on Γ21,
+ B.C. on ∂Ω2 ∩ ∂Ω,

(12)

and then:

λ1,n+1 = Bn12W
2,n+1 on Γ12, λ2,n+1 = Bn21W

1,n+1 on Γ21, (13)

where L is a linear differential operator and f 1,2 denotes the right-hand sides asso-
ciated with Ω1,2. The Schwarz algorithm (12) and (13) can be rewritten in substruc-
tured form as:
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λ1,n+1 = Bn12W
2(λ2,n, f2) , λ2,n+1 = Bn21W

1(λ1,n, f1),

where Wj = Wj(λj , f j) are the solutions of the local problems. By linearity of
the operators involved, an iteration of the Schwarz algorithm is then λn+1 = (Id −
T )λn + d, which is a fixed point iteration to solve the interface system T λ = d,
where λ = (λ1,λ2). From the discrete point of view, the global problem on domain
Ω can be written in the matrix form:⎛⎜⎜⎝

A1 0 R12 0
0 A2 0 R21

0 −B21 I 0
−B12 0 0 I

⎞⎟⎟⎠
⎛⎜⎜⎝

W1
h

W2
h

λ1
h

λ2
h

⎞⎟⎟⎠ =

⎛⎜⎜⎝
f1
h

f2
h

0
0

⎞⎟⎟⎠ ,

where A1,2 are local matrices coupling only internal unknowns, R 12,21 express the
coupling between internal unknowns and interface unknowns, and the subscript h
denotes the discrete counterpart of a given quantity (e.g. λ 1,2

h are the discretized
unknown vectors corresponding to λ1,2). The elimination of the internal unknowns
W1,2

h leads to the discrete interface problem Thλh = gh with:

Th =

⎛⎝ I B21A
−1
2 R21

B12A
−1
1 R12 I

⎞⎠ and gh =

⎛⎝B21A
−1
2 f2

h

B12A
−1
1 f1

h

⎞⎠ ,

where Th and gh are the discretization of T and d. This system is then solved by a
Krylov subspace method, as discussed in the following section.

5 Numerical Results

5.1 The 2D Case

We first present results for the solution of the 2D transverse magnetic Maxwell equa-
tions in the case of a heterogeneous non-conducting media:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

iωμrHx +
∂Ez
∂y

= 0,

iωμrHy −
∂Ez
∂x

= 0,

iωεrEz −
∂Hy

∂x
+
∂Hx

∂y
= 0.

The considered test problem is the scattering of a plane wave (F=300 MHz) by a
dielectric cylinder. For that purpose, we make use of a non-uniform triangular mesh
which consists of 2,078 vertices and 3,958 triangles (see Fig. 1 left). The relative
permittivity of the inner cylinder is set to 2.25 while vacuum is assumed for the rest of
the domain. We compare the solutions obtained using a DGTH-P p method with p =
1, 2, 3, 4 (i.e. the approximation order p is the same for all the mesh elements) and a
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variable order DGTH-Pp
K

method (i.e. p
K

is the approximation order in elementK).
In the latter case, the approximation order is defined empirically at the element level
based on the triangle area resulting in a distribution for which the number of elements
with p

K
= 1, 2, 3, 4 is respectively equal to 1,495, 2,037, 243 and 183 (contour lines

of Ez are shown on Fig. 1 right). The interface system is solved using the BiCGStab
method. The convergence of the iterative solution of the interface system is evaluated
in terms of the Euclidean norm of the residual normalized to the norm of the right-
hand side vector. The corresponding linear threshold has been set to ε i = 10−6. The
subdomain problems are solved using the MUMPS optimized sparse direct solver
[2].

Numerical simulations have been conducted on a cluster of 20 Intel Xeon/2.33
GHz based nodes interconnected by a high performance Myrinet network. Each node
consists of a dual processor quad core board with 16 GB of shared memory. Perfor-
mance results are summarized in Table 1 where Ns denotes the number of subdo-
mains and “# iter” is the number of iterations of the BiCGStab method. Moreover,
this table also includes the values of the L2 error on the Ez component for the ap-
proximate solutions resulting from each algorithm. We stress that the error is not
reduced for increasing approximation order because, in the current implementation
of the DG method, we make use of an affine transformation between the reference
and the physical elements of the mesh. These results demonstrate that the simple op-
timized interface condition considered here (see Sect. 3) results in substantial reduc-
tions of the required number of BiCGStab iterations for convergence of the Schwarz
algorithm. Worthwhile to note, the performance improvement increases with the ap-
proximation order in the DG method. Considering the case of the DGTH-P p

K
method

and for the decomposition into Ns = 4 subdomains, the elapsed time of the simu-
lation is equal to 25.8 and 3.6 s for the classical and optimized Schwarz algorithms
respectively.

-2

-1
.5-1

-0
.5 0

 0
.5 1

 1
.5 2

-2
-1

.5
-1

-0
.5

 0
 0

.5
 1

 1
.5

 2
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1.9
1.75
1.6
1.45
1.3
1.15
1
0.85
0.7
0.55
0.4
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0.1

-0.05
-0.2
-0.35
-0.5
-0.65
-0.8
-0.95
-1.1
-1.25
-1.4

Fig. 1. Scattering of a plane wave by a dielectric cylinder. Unstructured triangular mesh (left)
and contour lines of Ez (right).
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Table 1. Scattering of a plane wave by a dielectric cylinder. Classical v.s. optimized Schwarz
method. DGTH-Pp method based on the upwind flux (figures between brackets are the gains in
the number of BiCGStab iterations between the classical and optimized Schwarz algorithms).

Method L2 error on Ez L2 error on Ez Ns # iter # iter
classical optimized classical optimized

DGTH-P1 0.16400 0.16457 4 317 52 ( 6.1)
– 0.16400 0.16467 16 393 83 ( 4.7)

DGTH-P2 0.05701 0.05705 4 650 61 (10.7)
– 0.05701 0.05706 16 734 109 ( 6.7)

DGTH-P3 0.05519 0.05519 4 1,067 71 (15.0)
– 0.05519 0.05519 16 1,143 139 ( 8.2)

DGTH-P4 0.05428 0.05427 4 1,619 83 (19.5)
– 0.05427 0.05527 16 1,753 170 (10.3)

DGTH-Pp
K

0.05487 0.05486 4 352 49 ( 7.2)
– 0.05487 0.05491 16 414 81 ( 5.1)

5.2 The 3D Case

We now consider a more realistic 3D problem, namely the simulation of the exposure
of a geometrical model of head tissues to a plane wave (F=1,800 MHz). Starting from
MR images of the Visible Human project [16], head tissues are segmented and the
interfaces of a selected number of tissues (namely, the skin, the skull and the brain)
are triangulated (see Fig. 2 left). Then, these triangulated surfaces are used as inputs
for the generation of volume meshes. We consider here heterogeneous geometrical
models involving four tissues: the skin (εr = 43.85 and σ = 1.23 S/m), the skull
(εr = 15.56 and σ = 0.43 S/m), the CSF (Cerebro Spinal Fluid) (εr = 67.20
and σ = 2.92 S/m) and the brain (εr = 43.55 and σ = 1.15 S/m). Note that the
exterior of the head must also be meshed, up to a certain distance from the skin,
the overall domain being artificially bounded by a sphere on which an absorbing
condition is imposed. Two tetrahedral meshes have been used: the first one (referred
to as M1) consists of 188, 101 vertices and 1, 118, 952 tetrahedra, while the second
mesh (referred to as M2) consists of 309, 599 vertices and 1, 853, 832 tetrahedra.
Contour lines of Ex are shown on Fig. 2 right.

Numerical simulations have been conducted on a Bull Novascale 3045 parallel
system consisting of Intel Itanium 2/1.6 GHz nodes interconnected by a high perfor-
mance Infiniband network. Each node consists of a 8 core board with 21 GB of shared
memory. We present performance results for the classical Schwarz algorithm only
and the DGTH-P1 discretization method. The interface system is solved using the
BiCGstab(
) [17] method with a linear threshold that has been set to ε i = 10−6. The
subdomain problems are solved using the MUMPS optimized sparse direct solver
[2] but this time, the L and U factors are computed in single precision arithmetic in
order to reduce the memory requirements for storing the L and U factors associated
with the subdomain problems, and an iterative refinement strategy is used to increase
the accuracy of the subdomain triangular solves. Performance results are summa-
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rized in Table 2 for the factorization and solution phases. In these tables, “RAM LU
(min/max)” denotes the minimum and maximum values of the per-process memory
requirement for computing and storing the L and U factors. We note that doubling
the number of subdomains results in a slight increase in the number of BiCGstab(
)
iterations however, at the same time, the size of the local factors is reduced by a fac-
tor well above two and as a consequence, a super-linear speedup is observed in the
solution phase.

X
Y

Z

-0.05

REX
0.19
0.175
0.16
0.145
0.13
0.115
0.1
0.085
0.07
0.055
0.04
0.025
0.01

-0.005
-0.02
-0.035
-0.05
-0.065
-0.08
-0.095
-0.11
-0.125
-0.14
-0.155
-0.17
-0.185
-0.2

Fig. 2. Propagation of a plane wave in a heterogeneous model of head tissues. DGTH-P1

method based on a centered flux. Triangulated surface of the skull (left) and contour lines of
Ex (right).

Table 2. Propagation of a plane wave in a heterogeneous model of head tissues. Classical
Schwarz method. Performance results of the factorization and solution phases (figures between
brackets are relative parallel speedup values).

Mesh # d.o.f Ns RAM LU (min/max) Elapsed time LU # iter Elapsed time

M1 26,854,848 160 2.1 GB/3.1 GB 496 s 30 1,314 s
– – 320 0.8 GB/1.2 GB 132 s (3.8) 36 528 s (2.5)

M2 44,491,968 256 2.2 GB/3.2 GB 528 s 42 1,824 s
– – 512 0.8 GB/1.3 GB 142 s (3.7) 49 785 s (2.3)

6 Ongoing and Future Work

We have presented here some results of an ongoing collaborative effort aiming at
the design of domain decomposition methods for the solution of the time-harmonic
Maxwell equations modeling electromagnetic wave propagation problems in hetero-
geneous media and complex domains. The discretization in space of the underlying
PDE model relies on a high order DG method formulated on unstructured simpli-
cial meshes. For the solution of the resulting complex coefficients, sparse algebraic
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systems of equations, we consider using Schwarz algorithms in conjunction with the
adopted discretization method. Future work involves the study of optimized Schwarz
algorithms based on high order interface conditions for conductive media, and the
design of preconditioned iterative strategies for the solution of subdomain problems.
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