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1 Summary

A discontinuous Galerkin discretization for second order elliptic equations with dis-
continuous coefficients in 2-D is considered. The domain of interestΩ is assumed to
be a union of polygonal substructures Ω i of size O(Hi). We allow this substructure
decomposition to be geometrically nonconforming. Inside each substructure Ω i, a
conforming finite element space associated to a triangulation Thi(Ωi) is introduced.
To handle the nonmatching meshes across ∂Ω i, a discontinuous Galerkin discretiza-
tion is considered. In this paper additive Neumann–Neumann Schwarz methods are
designed and analyzed. Under natural assumptions on the coefficients and on the
mesh sizes across ∂Ωi, a condition number estimate C(1 + maxi log Hi

hi
)2 is es-

tablished with C independent of hi, Hi, hi/hj , and the jumps of the coefficients.
The method is well suited for parallel computations and can be straightforwardly ex-
tended to three dimensional problems. Numerical results, which are not included in
this paper, confirm the theoretical results.

2 Introduction

In this paper a discontinuous Galerkin (DG) approximation of elliptic problems
with discontinuous coefficients is considered [3]. See [1, 9] and references therein
for an overview on local DG discretizations. The problem is considered in a two-
dimensional polygonal region Ω which is a geometrically nonconforming union of
disjoint polygonal substructuresΩi, i = 1, . . . , N . For simplicity of presentation we
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assume that inside each substructureΩi the coefficient ρi is constant. The extension
of the results to mildly variation of ρi inside Ωi is straightforward. Large discon-
tinuities of the coefficients are assumed to occur only across the interfaces of the
substructures ∂Ωi. Inside each substructure Ωi a conforming finite element method
is introduced to discretize the local problem, and nonmatching triangulations are
allowed to occur across the ∂Ωi. This kind of composite discretization is motivated
by the location of the discontinuities of the coefficients and by the regularity of the
solution of the problem. The discrete problem is formulated using a symmetric DG
method with interior penalty (IPDG) terms on ∂Ω i. To deal with the discontinuities
of the coefficients across the substructure interfaces, harmonic averages of the coef-
ficients are considered on these interfaces; see [3].

The main goal of this paper is to design and analyze additive Neumann–Neumann
algorithms for the resulting DG-discrete problem. This type of algorithms is well es-
tablished for standard conforming and nonconforming discretizations; see [ 10] and
references therein. We note that other two-level and multilevel preconditioners have
been considered for solving discrete IPDG problems; see [2, 6, 8] and references
therein. These papers focus on the scalability of the preconditioners with respect
to the mesh parameters, however, little has been said about the robustness with re-
spect to jumps of the coefficients and nonmatching grids across the substructuring
interfaces. The notion of discrete harmonic extension in the DG sense was also in-
troduced in [4] to achieve these desirable robustness for geometrically conforming
substructures. In this paper we consider both the geometrically nonconforming case
and discontinuous coefficients.

The problem is reduced to the Schur complement form with respect to unknowns
on ∂Ωi, for i = 1, . . . , N . Discrete harmonic functions defined in a special way,
see Sect. 3.3, are used in this step. The methods are designed and analyzed for the
Schur complement problem using the general theory of N–N methods; see [ 10]. The
local problems are defined on Ωi and edges or part of the edge of ∂Ωj which are
common to Ωi. The coarse space is defined by using a special partitioning of unity
with respect to the subdomains Ωi and by introducing master and slave sides of the
local interfaces between the substructures. Recall that we work with a geometrically
nonconforming partition of Ω into substructures Ω i, i = 1, . . . , N . A (part of the)
edge Eij = ∂Ωi ∩ ∂Ωj is a master side when ρi ≥ Cρj , otherwise it is a slave
side. Hence, if Eij ⊂ ∂Ωi is a master side then Eji ⊂ ∂Ωj , Eij = Eji, is a slave.
The hi-triangulation on Eij and hj-triangulation on Eji are built in such a way that
hi ≥ Chj if ρi ≥ Cρj . Here hi and hj are the parameters of the triangulation in
Ωi and Ωj , respectively, and C is a generic O(1) constant. We prove that the algo-
rithms are almost optimal and their rates of convergence are independent of the mesh
parameters, the number of subdomainsΩ i and the jumps of the coefficients. The al-
gorithms are well suited for parallel computations and they can be straightforwardly
extended to three-dimensional problems.
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The paper is organized as follows. In Sects. 3.1 and 3.2 the differential problem
and its DG discretization are formulated. In Sect. 3.3 the Schur complement problem
is derived using discrete harmonic functions in a special way. Section 4 is dedicated
to introducing notation and the interface condition on the coefficients and the mesh
parameters. Two additive Neumann–Neumann Schwarz preconditioners, one based
on a small coarse space and the other based on a larger coarse space, are defined and
analyzed in Sect. 5.

3 Differential and Discrete Problems

In this section we formulate the discrete problem and its Schur complement problem.

3.1 Differential Problem

Consider the following problem: Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (Ω) (1)

where

a(u, v) :=
N∑
i=1

∫
Ωi

ρi∇u · ∇vdx and f(v) :=
∫
Ω

fvdx.

Here, Ω = ∪Ni=1Ωi where the substructuresΩi are disjoint regular polygonal subre-
gions of diameterO(Hi). We assume that the substructuresΩi form a geometrically
nonconforming partition of Ω, therefore, for all i �= j the intersection ∂Ω i ∩ ∂Ωj
is empty, a vertex of Ωi and/or Ωj , or a common edge or part of an edge of ∂Ω i

and ∂Ωj . If the decomposition is geometrically conforming, then the intersection
∂Ωi∩∂Ωj is empty or a common vertex ofΩi andΩj , or a common edge ofΩi and
Ωj . For simplicity of presentation we assume that the right-hand side f ∈ L 2(Ω)
and the coefficients ρi are all positive constants.

3.2 Discrete Problem

In each Ωi presentation, we introduce a shape regular triangulation Thi(Ωi) with
triangular elements and the mesh parameter h i. The resulting triangulation ofΩ is in
general nonmatching across ∂Ωi. We let Xi(Ωi) be the regular finite element (FE)
space of piecewise linear and continuous functions in Thi(Ωi). We do not assume
that the functions in Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. We define

Xh(Ω) := X1(Ω1)× · · · ×XN (ΩN )

and represent functions v of Xh(Ω) as v = {vi}Ni=1 with vi ∈ Xi(Ωi).
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The discrete problem obtained by the DG method, see [1, 3, 9], is of the form:
Find u∗h ∈ Xh(Ω) such that

âh(u∗h, vh) = f(vh) for all vh ∈ Xh(Ω) (2)

where

âh(u, v) =
N∑
i=1

âi(u, v) and f(v) =
N∑
i=1

∫
Ωi

fvidx. (3)

Each bilinear form âi is given as a sum of three bilinear forms:

âi(u, v) := ai(u, v) + si(u, v) + pi(u, v), (4)

where

ai(u, v) :=
∫
Ωi

ρi∇ui · ∇vidx, (5)

si(u, v) :=
∑

Eij⊂∂Ωi

∫
Eij

ρij
lij

(
∂ui
∂ni

(vj − vi) +
∂vi
∂ni

(uj − ui)
)
ds

and

pi(u, v) :=
∑

Eij⊂∂Ωi

∫
Eij

ρij
lij

δ

hij
(uj − ui)(vj − vi)ds. (6)

Here, the bilinear form pi is called the penalty term with a positive penalty parameter
δ. In the above equations, we set lij = 2 when Eij = ∂Ωi ∩ ∂Ωj is a common edge
(or part of an edge) of ∂Ωi and ∂Ωj , and define ρij := 2ρiρj/(ρi + ρj) as the
harmonic average of ρi and ρj , and hij := 2hihj/(hi + hj). In order to simplify
notation we include the index j = ∂ when Ei∂ := ∂Ωi ∩ ∂Ω is an edge of ∂Ωi and
set li∂ := 1 and let v∂ = 0 for all v ∈ Xh(Ω), and define ρi∂ := ρi and hi∂ := hi.
The outward normal derivative on ∂Ω i is denoted by ∂

∂ni
. We note that when ρij is

given by the harmonic average then min{ρ i, ρj} ≤ ρij ≤ 2 min{ρi, ρj}.

A priori error estimates for the method are optimal for constant coefficients, and
also for the case where hi and hj are of the same order; see [1, 9]. For discontinuous
coefficients ρi and/or for mesh sizes hi and hj are not on the same order, see Theorem
4.2 of [3] and Lemma 2.2 of [5].

3.3 Schur Complement Problem

In this subsection we derive the Schur complement bilinear form for the problem ( 2).
We first introduce auxiliary notation.

Define X◦
i (Ωi) as the subspace of Xi(Ωi) of functions that vanish on ∂Ωi. A

function ui ∈ Xi(Ω) can be represented as
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ui = Hiui + Piui (7)

whereHiui is the discrete harmonic part of ui in the sense of ai(., .), see (5), i.e.,{
ai(Hiui, vi) = 0 for all vi ∈ X◦

i (Ωi)
Hiui = ui on ∂Ωi,

(8)

while Piui is the projection of ui into X◦
i (Ωi) in the sense of ai(., .), i.e.,

ai(Piui, vi) = ai(ui, vi) for all vi ∈ X◦
i (Ωi). (9)

Note thatHiui is the classical discrete harmonic part of ui. Let us denote byX ◦
h(Ω)

the subspace ofXh(Ω) defined byX◦
h(Ω) := X◦

1 (Ω1)×· · ·×X◦
N(ΩN ) and consider

the global projectionsHu := {Hiui}Ni=1 andPu := {Piui}Ni=1 : Xh(Ω) → X◦
h(Ω)

in the sense of
∑N
i=1 ai(·, ·). Hence, a function u ∈ Xh(Ω) can then be decomposed

as
u = Hu+ Pu. (10)

Alternatively to (10), a function u ∈ Xh(Ω) can be represented as

u = Ĥu+ P̂u, (11)

where P̂u = {P̂iui}Ni=1 : Xh(Ω) → X◦
h(Ω) is the projection in the sense of the

original bilinear for âh(·, ·), see (3), and Ĥu = {Ĥiu}Ni=1 ∈ Xh(Ω) where Ĥiu
is the discrete harmonic part of u in the sense of â i(., .) defined in (4), i.e., Ĥiu ∈
Xi(Ωi) is the solution of⎧⎨⎩

âi(Ĥiu, vi) = 0 for all vi ∈ X◦
i (Ωi),

Ĥiu = ui on ∂Ωi
Ĥiu = uj on every (part of) edge Eji ⊂ ∂Ωj .

(12)

Here the index j in the last equation of (12) runs over all Ωj and j = ∂ such that
Ωi ∩ Ωj and Ωi ∩ ∂Ω has one-dimensional nonzero measure, respectively. In the
latter case, recall that u∂ = 0.

Observe that since P̂iui ∈ X◦
i (Ωi) we have that for all vi ∈ X◦

i (Ωi),

ai(P̂iu, vi) = âh(u,RTi vi),

where RTi is the standard discrete zero extension operator, i.e., RT
i vi := {vj}Nj=1,

where vj vanishes for j �= i; see also Sect. 4 for the definition of other discrete zero
extension operators Ii and Ĩi.

The discrete solution of (2) can be decomposed as u∗
h = Ĥu∗h+P̂u∗h. To compute

the projection P̂u∗h we need to solve the following set of standard discrete Dirichlet
problems:

ai(P̂iu∗h, vi) = f(RTi vi) for all vi ∈ X◦
i (Ωi). (13)
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Note that these problems, for i = 1, . . .N , are local and independent, and so, they
can be solved in parallel. This is a precomputational step.

We next formulate the problem for Ĥu∗h. We first point out that for vi ∈ X◦
i (Ωi)

we have

âi(ui, vi) = (ρi∇ui,∇vi)L2(Ωi) +
∑

Eij⊂∂Ωi

ρij
lij

(
∂vi
∂n

, uj − ui)L2(Eij). (14)

For u ∈ Xh(Ω) observe that (12) is obtained from

âh(Ĥu, v) = 0 (15)

by taking v = {vi}Ni=1 ∈ X◦
h(Ω). It is easy to see that Ĥu = {Ĥiu}Ni=1 and P̂u =

{P̂iui}Ni=1 are orthogonal in the sense of âh(., .), i.e.,

âh(Ĥu, P̂v) = 0, u, v ∈ Xh(Ω). (16)

In addition,
HĤu = Hu and ĤHu = Ĥu (17)

since neither Ĥu nor Hu changes the values of u at the nodes on the boundaries of
the subdomainsΩi; see (8) and (12).

Define
Γh := (∪i∂Ωihi), (18)

where ∂Ωihi is the set of nodal points of ∂Ωi. We note that the definition of Γh in-
cludes the nodes on both triangulations of ∪ i∂Ωi.

We are now in a position to derive the Schur complement problem for ( 2). Ap-
plying the decomposition (11) in (2) we obtain

âh(Ĥu∗h + P̂u∗h, Ĥvh + P̂vh) = f(Ĥvh + P̂vh).

Using (13) and (15) we have

âh(Ĥu∗h, Ĥvh) = f(Ĥvh) for all vh ∈ Xh(Ω). (19)

This is the Schur complement problem for (2). We denote by V the set of all functions
vh inXh(Ω) such that vh ≡ Ĥvh, i.e., the space of discrete harmonic functions in the
sense of the Ĥ. We rewrite the Schur complement problem as follows: Find u∗

h ∈ V
such that

S(u∗h, vh) = g(vh) for all vh ∈ V (20)

where, here and below, u∗
h ≡ Ĥu∗h and

S(uh, vh) := âh(Ĥuh, Ĥvh) and g(vh) := f(Ĥvh). (21)

The Schur complement problem (20) has a unique solution.



DG Solvers for Geometrically Nonconforming Substructures 33

4 Notation and the Interface Condition

We first classify substructures according to their position with respect to the bound-
ary ∂Ω. We say that a substructure Ωi is an interior substructure or floating sub-
structures if Ωi does not share an edge with the boundary of Ω. Otherwise, we say
it is a boundary substructure or nonfloating substructure. We denote by N I andNB
the sets of indices of interior and boundary substructures, respectively.

Let
◦
Ωihi and ∂Ωihi be the interior and boundary nodes of Thi(Ωi) in Ωi and on

∂Ωi, respectively. Define Eijhi as the set of nodes of ∂Ωihi that are on Eij . Recall
that Eij is a closed interval. We also define ∂Eijhi as the set of nodes on Eijhi that

are closest to the boundary ∂Eij . Let
◦
Eijhi := Eijhi \ ∂Eijhi be the set of interior

nodes in Eij . Additionally, we define the extended boundary nodes ∂ eEijhi as the
union of ∂Eijhi and the nodal points y ∈ ∂Ωi \ Eij closest to x ∈ ∂Eij when x is
not a nodal point. Note that when Eij is a full edge of ∂Ωi, then ∂eEijhi = ∂Eij .

Let Eijhi :=
◦
Eijhi ∪ ∂eEijhi . We define

Γi := ∂Ωihi ∪
⋃

Eij⊂∂Ωi

Ejihj . (22)

Note that Γi is defined to include the nodes on Γh necessary for computing Ĥi;
see (12). Define Wi as the space of piecewise linear functions or its vector represen-
tation defined by the nodal values on Γ i extended via Ĥi (defined in (12)) inside Ωi,
i.e.,

Wi :=
{

nodal values of v defined on
◦
Ωihi ∪ Γi : v ≡ Ĥiv in Ωi

}
. (23)

Observe that a function u(i) ∈Wi can be represented as

u(i) = {u(i)
l }l∈#(i) where #(i) = {i} ∪ {j : Eij ⊂ ∂Ωi}.

Here u(i)
i and u(i)

j stand for the nodal values of u(i) onΩi and onEjihj , respectively.
Recall also that sometimes we write u = {ui}Ni=1 ∈ V to refer to a function defined
on all of Γh with each ui defined (only) on ∂Ωi; see Sect. 3.2. We point out that
Eij andEji are geometrically the same even though the mesh on the side E ij comes
from the Ωi triangulation while the mesh on the side Eji corresponds from the Ωj

triangulation. Note also that, according to our conventions, if i ∈ NB and u(i) ∈ Wi

then u(i)
∂ = 0 on the fictitious edge E∂i.

Define the extension operator Ĩi : Wi → V as follows: Given u(i) ∈ Wi, let

Ĩiu
(i) be equal to u(i) at the nodes of Γi and

◦
Ωihi , equal to zero on Γh\Γi, and

extended by ĤĨiu(i) elsewhere and denoted also by Ĩi, i.e.,
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Ĩiu(x) =

⎧⎨⎩
u(x) if x ∈ Γi
0 if x ∈ Γh\Γi
ĤĨiu elsewhere,

(24)

where the last condition on (24) means that Ĩiu is discrete harmonic in the sense of
Ĥ.

To each pair {Eij , Eji} we assign one master and one slave side. IfEij is chosen
to be the slave side then Eji must be the master one. Note that since we are working
with a geometrically nonconforming decomposition of Ω, a part of an edge can be
labeled as master side while other part of the same edge can be marked as the slave
side. The choice of slave-master sides is such that the interface condition, stated
next in Assumption 1, can be satisfied. Under this assumption, Theorems 1 below
hold with constants C1 and C2 independent of the ρi, hi and Hi. This assumption
says basically that the coarser meshes hi should be chosen where the coefficients
ρi are larger, and additionally, the master side should be chosen on the side where
the coefficient is larger. In terms of accuracy, this condition is satisfied in practice
since the solution u∗ in general varies less where the coefficient is larger. We note
that this condition is similar to the ones adopted in mortar studies for geometrical
nonconforming cases; [7].

Assumption 1 (The interface condition) We say that the coefficients {ρi} and the
local mesh sizes {hi} satisfy the interface condition if there exist constants β1 and
β2, of order 1, such that for any (part of) edge Eij , one of the following inequalities
hold: {

hi ≤ β1hj and ρi ≤ β2ρj if Eij is a slave side, or
hj ≤ β1hi and ρj ≤ β2ρi if Eij is a master side.

(25)

We associate to eachΩi 1, · · · , N , a diagonal weighting matrixD (i) = {D(i)
l }l∈#(i)

on Γi∪
◦
Ωihi . Let x be a nodal point of Γi∪

◦
Ωihi . Then, the diagonal element ofD (i)

associated to x is defined by:

• On
◦
Ωihi ∪ ∂Ωi,hi (l = i)

D
(i)
i (x) =

{
0 if x ∈

◦
Eijhi and Eij is a slave side

1 otherwise,
(26)

• On Ejihj (l = j)

D
(i)
j (x) =

⎧⎪⎨⎪⎩
0 if x ∈ ∂eEjihj ,

1 if x ∈
◦
Ejihj and Eij is a master side

0 if x ∈
◦
Ejihj and Eij is a slave side,

(27)
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• On Ei∂hi

D
(i)
i (x) = 1 for all x ∈ Ei∂hi .

The prolongation operators Ii : Wi → V , i = 1, · · · , N , are defined as

Ii = ĨiD
(i). (28)

It is easy to see that the image of Ii forms a decomposition of V since

N∑
i=1

IiĨ
T
i u = u, (29)

where the ĨTi stand for the restriction of V to Wi.

5 Additive Preconditioners

To design and analyze additive N–N type methods for solving ( 20) we use the gen-
eral framework of ASMs; see Theorem 2.7 in [10]. We now consider an additive
Schwarz method based on the coarse space V0,I , i.e., a coarse space with one degree
of freedom per interior substructure and no degrees of freedom for any boundary
substructure; see (34). We now introduce the local and coarse problems to define the
additive Schwarz method Tas,I .

5.1 Local Problems

Recall the definition of Γi in (22), the space Wi in (23) and the sets of NB and NI
substructures, see Sect. 4. Define⎧⎪⎨⎪⎩

Vi = Vi(Γi) :=
{
u(i) ∈ Wi :

∫
∂Ωi

u
(i)
i = 0

}
, if i ∈ NI

Vi = Vi(Γi) := Wi, if i ∈ NB
(30)

i.e., for interior substructures Ωi, Vi is the subspace of Wi consisting of functions
with zero average value on ∂Ωi, while for boundary substructures, V i is the whole
space Wi. We recall that for v(i) ∈ Wi (or Vi) then v(i) ≡ Ĥiv(i) and v ∈ V we
have v(i) = Ĥiv(i) and v = Ĥv.

For u(i), v(i) ∈ Vi, i = 1, . . . , N , we define the local bilinear form bi as

bi(u(i), v(i)) := âi(u(i), v(i)), (31)

where the bilinear form âi is defined in (4). We define the operators Ti : V → V ,
i = 1, . . . , N , by defining T̃i : V → Vi as

bi(T̃iu, v(i)) = âh(u, Iiv(i)) for all v(i) ∈ Vi, (32)

and then set Ti = IiT̃i. It is easy to see that these problems are well posed and that
the Ti are symmetric with respect to the âh-inner product.
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5.2 Coarse Problems

Let e(i) ∈ Wi be the vector with value one at the nodes of Γ i and on
◦
Ωihi . Recall

that the prolongation operators Ĩi and Ii are defined in (24) and (28), respectively.
Define Θi ∈ V , for i = 1, . . . , N , as Θi := ĨiΘ

(i) where Θ(i) = D(i)e(i), hence,
Θi = Iie

(i). Note from (26) and (27) we have that

N∑
i=1

Θi = 1 on Γh. (33)

We consider the following coarse space:

V0,I = Span {Θi}i∈NI
⊂ V. (34)

The coarse bilinear form is defined according to

b0(u, v) =
(

1 + log
H

h

)−2

âh(u, v), u, v ∈ V0,I . (35)

Next we define the projection-like operator T0 : V → V0,I as

b0(T0u, v
(0)) = âh(u, v(0)) for all v(0) ∈ V0,I . (36)

This problem is well posed and symmetric with respect to the âh-inner product.

The additive preconditioner is defined by

Tas,I =
N∑
i=0

Ti. (37)

Note that Tas,I is symmetric with respect to the inner product âh(·, ·).

5.3 Condition Number Estimate for Tas,I

In this section we state the main result concerning the preconditioner defined in ( 37)
with V0 = V0,I .

Theorem 1. Let Assumption 1 be satisfied. In addition, assume that for i ∈ NB , the
size of ∂Ωi∩∂Ω is of the same order as the diameter ofΩi. Then there exist positive
constants C1 and C2 independent of hi, Hi, hi/hj and the jumps of ρi such that

C1âh(u, u) ≤ âh(Tas,Iu, u) ≤ C2

(
1 + log

H

h

)2

âh(u, u) for all u ∈ V. (38)

Here log(H/h) = maxi log(Hi/hi).

Proof. By the general theory of ASMs we need to check three key assumptions; see
Theorem 2.7 [10]. The proof can be found in [5].
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6 Final Remarks

The ASM considered can be generalized replacing the coarse space V 0,I , see (34),
by adding boundary coarse basis functions, i.e.,

V0,I∪B = Span {Θi}i∈NI∪NB
. (39)

The additive preconditioner is then defined by

Tas,I∪B =
N∑
i=0

Ti, (40)

where the T0 is defined as in (36) except that now we replace V0,I by V0,I∪B . For
this preconditioner, the Theorem 1 is also valid, moreover, it is valid without the as-
sumption that the size of ∂Ωi∩∂Ω is of the same order as the diameter of ∂Ωi when
i ∈ NB .

The tools of the discussed methods can be used to design and analyze hybrid
(BDD) methods for (20). We can also consider hybrid versions of Tas,I∪B, see [5].

The numerical tests carried out for the above methods confirm the theoretical re-
sults, see [5]. In particular, Assumption 1 is necessary and sufficient.

The discussed methods can be straightforwardly extended to 3-D cases.
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