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1 Introduction

It is significant to obtain the ground state energy in the electronic structure study. In
modern electronic structure calculations, the ground state energy is usually obtained
from solving the Kohn–Sham equation [4, 17]. A general concern is the Kohn–Sham
equation of a confined system posed on a bounded domainΩ ⊂ R 3:{

(− 1
2Δ+ Veff (ρ))ψi = εiψi, in Ω,

ψi = 0, on ∂Ω, i = 1, . . . , Ns,
(1)

where ρ(r) ≡
∑Ns

i=1 fi|ψi(r)|2 is the electron density, Ns the number of electron
orbitals ψi with associated occupancy number fi, and Veff (ρ) the so-called effective
potential that is a nonlinear functional of ρ.
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To solve nonlinear eigenvalue problem (1), a self-consistent approach such as
DIIS (Direct Inversion Iterative Subspace) or Pulay’s method in [ 22, 23] is required.
As a result, the central computation in solving the Kohn–Sham equation is the re-
peated solution of the following type of linear eigenvalue problem:{

−Δu+ V u = λu, in Ω,
u = 0, on ∂Ω,

(2)

where V is some effective potential. Since the electron density at the ground state
decays exponentially [2, 13, 27], we may setΩ to be a cube in the computation. Note
that even though V in (2) was relatively smooth in the pseudopotential setting, the
eigenfunctions of (2) would vary rapidly in the neighborhood of the nuclei but be
diffuse further away. Thus some efficient multi-resolution is significant for approxi-
mating eigenfunctions in the real space [4, 6, 20].

The multi-resolution can be achieved by adaptive finite element discretizations.
Indeed, the preponderant strength of the finite element method lies in its ability to
arrange local refinements in the regions where there are strong variations and high
resolution is needed while treating the distant zones from nuclei at a coarser scale.
We refer the reader to [4, 8, 9, 10, 21, 28, 33] and the references cited therein for
the applications of finite element methods to electronic structure calculations. In this
work, adaptive hexahedral finite elements will be studied for a better accuracy and
efficiency on such a cubic domain [5, 11].

Once finite element eigenfunctions reach the self-consistent convergence, some
postprocessing techniques are worth while to enhance the approximations when the
extra cost is low. Indeed, the effectiveness of finite element postprocessing has been
already shown in [8, 9, 10, 26]. In this paper we propose an interpolation based local
postprocessing scheme for finite element quantum eigenvalue approximations and
apply the approach to improve the ground state energy approximation. This scheme
is derived from our understanding of the behavior of wavefunctions. For a quantum
many-particle system, there is a general principle of locality or “nearsightedness”
that the properties at one point may be considered independent of what happens
at distant points [14, 16, 20]. And wavefunctions of a quantum many-particle sys-
tem are somehow smooth and oscillate in the region where the system is located
only [2, 15, 32]. Thus local higher order finite elements should be used (c.f., e.g.,
[8, 9, 10]). The computational complexity of higher order finite element discretiza-
tions, however, is larger than that of lower order finite element discretizations. To
reduce the complexity, in this paper, we will propose some higher order interpola-
tion approach for fast higher order finite element eigenvalue approximations. This
approach is a local postprocessing on the lower order finite element approximations
with little extra cost.

Now let us give some more details for an illustrative exhibition of the main idea
in this paper. The trilinear finite element eigenfunctions are expanded by the basis
of trilinear finite elements distributed on the locally refined mesh. In the case of the
self-consistent convergence, we locate the father cell with eight children lying at
the finest level of the hierarchy of grids. Based on trilinear finite element solutions
on the children, a new eigenfunction approximation can be easily constructed as a
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triquadratic polynomial on this father cell. And the local accuracy enhancement of
eigenfunctions in the high-resolution regions will effectively improve the approxi-
mations of the associated eigenvalues as well as ground state energies by Rayleigh
quotients.

Our interpolation approach may be viewed as an averaging technique over adap-
tive finite element meshes while the existing averaging technique for quantum eigen-
value approximations in [26] is set for the gradient of eigenfunctions, in particular,
employs some global projection. It is significant that our interpolation based local
postprocessing is carried out only over the local domain where the molecular system
is located. More notably, there are no auxiliary degrees of freedom needed by our
postprocessing since the high-order interpolation is locally constructed over the se-
lected father cells at the coarser level next to the finest. So, our approach is good at
memory requirement and computation complexity. The theoretical tool for motivat-
ing this idea is the local error estimates for finite element approximations developed
in [29, 31] (see also Sect. 2.1). We should mention that an interpolation global post-
processing is first introduced in [18] for finite element eigenvalue approximations
over uniformly finite element meshes.

It is shown numerically that our scheme is a potentially efficient postprocessing
technique for computing quantum eigenvalues (see Sect. 3.2). In fact, the computed
electron density in the region of the system can be improved by the local high-order
interpolation postprocessing. So it is expected that our approach would also benefit
calculations of other quantum quantities.

The rest of this paper is organized as follows. In the next section, we first intro-
duce our hexahedral finite element discretizations and then illustrate the local inter-
polation postprocessing theoretically and numerically. We present some applications
to electronic structure calculations in Sect. 3 and finally we provide some concluding
remarks.

2 Interpolation Based Finite Element Postprocessing

In this section, we shall first describe some basic notation and a finite element dis-
cretization for eigenvalue problem (2) and then introduce our local interpolation post-
processing, which will be supported by numerical experiments for a model example.

We shall use the standard notation for Sobolev spacesW s,p(Ω) and their associ-
ated norms and seminorms (see, e.g., [1]). For p = 2, we denoteH s(Ω) = W s,2(Ω)
and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace,
‖ · ‖s,Ω = ‖ · ‖s,2,Ω and ‖ · ‖Ω = ‖ · ‖0,2,Ω. (In some places in this paper, ‖ · ‖s,2,Ω
should be viewed as piecewise defined if necessary.)

Throughout this paper, we shall use the letter C (with or without subscripts) to
denote a generic positive constant which may stand for different values at its different
occurrences. One basic assumption on the mesh is that the level difference of two
adjacent cells cannot be more than one. For D ⊂ Ω0 ⊂ Ω, we use the notation
D ⊂⊂ Ω0 to mean that dist(∂D \ ∂Ω, ∂Ω0 \ ∂Ω) > 0.
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Let Ω = (a, b)3 with a, b ∈ R. Let T h(Ω) consist of hexahedra whith edges
parallel to x-axis, y-axis and z-axis respectively, where h is the mesh size. Define

Sh(Ω) = {v ∈ C(Ω̄) : v|τ ∈ Qτ ∀τ ∈ T h(Ω)}, (3)

where Qτ = span{xiyjzk : 0 ≤ i, j, k ≤ 1}. Set Sh0 (Ω) = Sh(Ω) ∩H1
0 (Ω). These

are Lagrange finite element spaces. We refer the reader to [7, 29] (see also [24, 25])
for their basic properties that will be used in our analysis.

If Ih : C(Ω̄) −→ Sh(Ω) is the trilinear Lagrange finite element interpolation
operator associated with T h(Ω), then we derive from integration by parts that (see,
e.g., [12, 19])∣∣∣∣∫

τ

∇(w − Ihw)∇v
∣∣∣∣ ≤ Ch2

τ |w|3,τ |∇v|0,τ ∀v ∈ Sh(Ω), ∀τ ∈ T h(Ω), (4)

where hτ is the diameter of τ .

2.1 Finite Element Discretizations

A standard finite element discretization for (2) is: Find a pair of (λh, uh) ∈ R ×
Sh0 (Ω) satisfying ‖uh‖0,Ω = 1 and

a(uh, v) = λh(uh, v) ∀v ∈ Sh0 (Ω). (5)

We use (λh, uh) as an approximation to (λ, u) ∈ R × H 1
0 (Ω), where (λ, u) is a

solution of

a(u, v) = λ(u, v) ∀v ∈ H1
0 (Ω) (6)

with ‖u‖0,Ω = 1 and

a(w, v) =
∫
Ω

1
2
∇w∇v + V wv ∀w, v ∈ H1

0 (Ω).

If V ∈ L∞(Ω), then the associated exact eigenfunction u ∈ H 1
0 (Ω) ∩H2(Ω).

Thus we may assume that (see, e.g., [3])

|λ− λh|+ h‖∇(u− uh)‖0,Ω + ‖u− uh‖0,Ω ≤ Ch2. (7)

Let Ph : H1
0 (Ω) −→ Sh0 (Ω) be the Galerkin projection defined by

a(w − Phw, v) = 0 ∀v ∈ H1
0 (Ω). (8)

Then we have (see [30])

Proposition 1. There holds

‖Phu− uh‖1,Ω ≤ Ch2. (9)
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2.2 Interpolation Based Local Postprocessing

Let Ω0 be a subdomain of Ω. The following local superclose result can be derived
from (4) and the local error estimation of finite element Galerkin approximations
(see, e.g., [19])

Proposition 2. Let D ⊂⊂ Ω0. If u ∈ H1
0 (Ω) ∩H3(Ω0), then

‖Phu− Ihu‖1,D ≤ Ch2. (10)

It is seen that we can define a triquadratic Lagrange interpolation Π 2h on any
father cell � that consists of 27 children elements in T h(Ω). LetΩ0 be covered by a
group of father cells and aligned with T h(Ω). Note that

Π2hIh = Π2h,

‖∇Π2hv‖0,� ≤ ‖∇v‖0,� ∀v ∈ Sh(Ω),
‖Π2hw − w‖1,� ≤ Ch2‖w‖3,�.

We obtain

‖Π2huh − u‖1,D ≤ Ch2 (11)

from Proposition 1, Proposition 2, and the identity

Π2huh − u = Π2h(uh − Phu) +Π2h(Phu− Ihu) +Π2hu− u.

We may use some a Rayleigh quotient to get a new eigenvalue approximation λ h

as follows

λh =
a(uh, uh)
‖ uh ‖20,Ω

,

where

uh =
{
Π2huh , in Ω̄0,
uh , in Ω \ Ω̄0.

(12)

Indeed, our numerical experiments show that λh is much more accurate than λh even
if Ω0 is a part of Ω where local quadratic interpolationΠ2h can be carried out.

2.3 Quantum Harmonic Oscillator

For illustration, we consider an oscillator model, which is a simple problem in quan-
tum mechanics:

−1
2
Δu+

1
2
|x|2 u = λu, in R3. (13)

The first eigenvalue of (13) is λ = 1.5 and is associated with the eigenfunction

u = γe−
|x|2
2 , where γ is a nonzero constant so that ‖u‖0,R3 = 1.
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In our experiments, we choose Ω = (−5.0, 5.0)3 as the computational domain,
on which the zero Dirichlet boundary condition is imposed. We use a uniform mesh
as the initial mesh. We carry out local refinements on subdomainΩ0 = (−2.5, 2.5)3

by uniformly refining once and consider D = (1.25, 1.25)3. Let(λh, uh), (λh, uh)
be the trilinear finite element approximation to (λ, u) and the interpolation postpro-
cessing eigenpair, respectively. Define

eh = |λh − λ| , eh =
∣∣λh − λ∣∣ .

ηh = ‖∇(uh − u)‖0,D , η
h = ‖∇(Π2huh − u)‖0,D .

Numerical results in Table 1 show the errors of the first eigenpair which supports our
theory.

Table 1. Oscillator: interpolation on Ω0.

Initial mesh size ηh Order(ηh) eh ηh Order(ηh) eh

1/2−3 × 10.0 0.20743 0.03846 0.14364 0.01407
1/2−4 × 10.0 0.10508 0.98114 0.00975 0.03265 2.13730 0.00141
1/2−5 × 10.0 0.05269 0.99589 0.00244 0.00817 1.99868 0.00024
1/2−6 × 10.0 0.02636 0.99918 0.00061 0.00205 1.99471 0.00005

3 Applications to Electronic Structure Calculations

Now we apply the interpolation based local postprocessing approach to solving
Kohn–Sham equation (1), from which we see that highly accurate finite element
approximations can be obtained over adaptive finite element meshes by using tri-
quadratic interpolation postprocessing on each father cell of the coarser level next to
the finest of the grid hierarchy.

3.1 Linearization of Kohn–Sham Equation

Since Kohn–Sham equation (1) is a nonlinear eigenvalue system, we need to linearize
and solve it iteratively, which is called self-consistent field iteration (SCF). The SCF
iteration is described as follows:

1. Given an initial electron density ρin(r).
2. Compute Veff (ρin) and solve⎧⎨⎩ (− 1

2Δ+ Veff (ρin))ψi = εiψi, in Ω,
ψi = 0, on ∂Ω,∫

Ω
ψiψj = δij , i, j = 1, . . . , Ns.

(14)

3. Set ρout =
∑Ns

i=1 fi|ψi(r)|2.
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4. Compute the difference between ρin and ρout. If the difference is not small
enough, “mix” density using Pulay’s method to obtain the new ρ in, repeat from
Step 2. Otherwise stop.

In our computation, Pulay’s method [22, 23] will be used. After self-consistent
convergence is reached, we (carry out the postprocessing and) compute the total
energy of the ground state [20]:

Etot =
Ns∑
i=1

fiεi −
∫
Ω

drVxc(r)ρ(r) −
1
2

∫
Ω

∫
Ω

ρ(r)ρ(r′)
|r− r′| + Exc(ρ)

+
1
2

Nnuclei∑
I,J=1,I 
=J

ZIZJ
|RI −RJ |

, (15)

where Vxc is the exchange-correlation potential, Exc the exchange-correlation en-
ergy, εi(i = 1, . . . , Ns) the eigenvalues, and RI and Z ionI represent position and
valence of the I-th atom, respectively.

3.2 Experiments

The initial electron density in our computation is constructed by some combination
of the pseudo atomic obitals [11] and the adaptive refinement is done through the
following a posteriori error estimators [8]:

hτ‖∇ρ‖0,τ ∀τ ∈ T h(Ω). (16)

The mesh should be locally refined so as to meet the multi-resolution require-
ments (see Sect. 1). We locate father cells on the coarser level next to the finest of the
grid hierarchy and carry out the triquadratic interpolation on these father cells. Our
hexahedral mesh is well suited for this local interpolation: values of the trilinear fi-
nite element solutions on the 27 nodes are employed to determine the 27 coefficients
of the required triquadratic Lagrange interpolating functions.

Figures 1, 2 and 3 are schematic figures illustrating the hexahedral discretizations
before and after a local refinement around nuclei and the way to do the triquadratic
interpolation. Figure 1 shows the standard hexahedral finite element discretizations
and there is a nucleus within the dashed cell, for instance. Figure 2 gives the grid after
refinement. The dashed subdomain has been divided into eight child cells. Figure 3
emphasizes those 27 nodes for the triquadratic Lagrange interpolation on the father
cell.

After this “smoothing” of the eigenfunctions, we construct new eigenvalue ap-
proximations by the following Rayleigh quotients:

εi =
1
2

∫
Ω

∣∣∇uhi ∣∣2 +
∫
Ω
Veff (ρin)(uhi )

2∫
Ω(uhi )2

. (17)

Consequently, the ground state total energy can be improved by these updated eigen-
values (c.f. (15)).
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Fig. 1. Standard hexahedral
FE discretizations with a
nucleus in the dashed cell.

Fig. 2. Hexahedral mesh af-
ter local refinement on the
dashed cell.

Fig. 3. 27 marked points for
triquadratic interpolation on
the father cell.

Our computing platform is a Dell Optiplex 755 (Intel Core Duo 2.6 GHz, 4 MB
L2 cache, 2 GB memory), provided by the State Key Laboratory of Scientific and
Engineering Computing (LSEC) of Chinese Academy of Sciences. Our programs
are compiled with “g++ -O3” and run on a single core. The package ARPACK is
employed as the eigensolver. The hexahedral grids are visualized by JaVis-1.2.3 de-
veloped by HPCC of Institute of Applied Physics and Computational Mathematics.

Benzene

Our computational domain for molecule benzene is [−20.0, 20.0] 3 and the adaptive
finite element grids are generated on the basis of initial density and the a posteriori
error estimators mentioned above. We see that the total energy decreases significantly
after interpolation postprocessing. Note that the time of postprocessing is 5 s out of
a total time of about 1 min.

Fig. 4. A coarser mesh of C6H6

next to the finest mesh at z = 0.0 au.
Fig. 5. The finest mesh of C6H6 at z = 0.0 au.



Interpolation Based Local Finite Element Postprocessing 59

Table 2. Benzene: interpolation on a part of the father cells.

Etot Err. w.r.t SIESTA’s Epost
tot Err. w.r.t SIESTA’s

−37.03 au 1.5% −37.58 au 0.053%

Table 3. Benzene: total CPU time and time for postprocessing.

Total CPU time CPU time for postprocessing Percentage
66.74 s 5.08 s 7.61%

Fullerene

To simulate the moleculeC60, we use [−30.0, 16.0]×[−23.0, 22.0]×[−24.0, 21.0]as
the computational domain. Table 4 shows that, after interpolation postprocessing on
the father cells, we obtain a satisfactory approximation of the total energy. Besides,
the computational cost is small compared to solving the linear eigenvalue problems.
In this example, based on our choice of initial density, we achieve convergence after
four self-consistent steps, and the time of postprocessing is 5 min out of a total time
of about 80 min.

Fig. 6. A coarser mesh of C60

next to the finest mesh at z = 0.0 au.
Fig. 7. The finest mesh of C60 at z = 0.0 au.

Table 4. Fullerene: interpolation on a part of the father cells.

Etot Err. w.r.t SIESTA’s Epost
tot Err. w.r.t SIESTA’s

−328.78 au 3.67% −335.78 au 1.62%
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Table 5. Fullerene: total CPU time and time for postprocessing.

Total CPU time CPU time for postprocessing Percentage
81 m 7.65 s 5 m 9.67 s 6.37%

4 Concluding Remarks

In this paper, we have proposed an interpolation based local postprocessing approach
to adaptive finite element approximations in electronic structure calculations. It is
shown by the theoretical analysis for linear eigenvalue problems and particularly
successful applications to ground state energy calculations that this is a simple but
powerful approach for highly accurate approximations. In our ongoing work, we ap-
ply this approach to computations of other quantum quantities of complex molecular
systems.
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