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1 Introduction

In many fields of applications it is necessary to couple models with very different spa-
tial and time scales and complex geometries. Amongst them are ocean-atmosphere
coupling and far field simulations of underground nuclear waste disposal. For such
problems with long time computations, a splitting of the time interval into windows
is essential. This allows for robust and fast solvers in each time window, with the
possibility of nonconforming space-time grids, general geometries, and ultimately
adaptive solvers.

Optimized Schwarz Waveform Relaxation (OSWR) methods were introduced
and analyzed for linear advection-reaction-diffusion problems with constant coef-
ficients in [1, 3, 9]. All these methods rely on an algorithm that computes inde-
pendently in each subdomain over the whole time interval, exchanging space-time
boundary data through optimized transmission operators. They can apply to different
space-time discretization in subdomains, possibly nonconforming and need a very
small number of iterations to converge. Numerical evidences of the performance of
the method with variable smooth coefficients were given in [9].

An extension to discontinuous coefficients was introduced in [4], with asymptot-
ically optimized Robin transmission conditions in some particular cases. In [ 2, 6],
semi-discretization in time in one dimension was performed using discontinuous
Galerkin, see [8, 10]. In [7], we extended the analysis to the two dimensional
case. We obtained convergence results and error estimates for rectangular or strip-
subdomains.

For the space discretization, we extended numerically the nonconforming ap-
proach in [5] to advection-diffusion problems and optimized order 2 transmission



76 L. Halpern et al.

conditions, to allow for non-matching grids in time and space on the boundary. The
space-time projections between subdomains were computed with an optimal projec-
tion algorithm without any additional grid, as in [5]. In [7], two dimensional simula-
tions with continuous coefficients were presented.

We present here new results in two directions: we extend the proof of conver-
gence of the OSWR algorithm to nonoverlapping subdomains with curved interfaces.
We also present simulations for two subdomains, with piecewise smooth coefficients
and a curved interface, for which no error estimates are available. We finally present
an application to the porous media equation.

We consider the advection-diffusion-reaction equation,

∂tu+∇ · (bbbu− ν∇u) + cu = f in RN × (0, T ), (1)

with initial condition u0, and N = 2. The advection, diffusion and reaction coeffi-
cients bbb, ν and c, are piecewise smooth, we suppose ν ≥ ν0 > 0 a.e..

2 The Continuous OSWR Algorithm

We consider a decomposition into nonoverlapping subdomains Ω i, i ∈ {1, ..., I},
organized as depicted in Fig. 1. The interfaces between the subdomains are supposed
to be flat at infinity. For any i ∈ {1, ..., I}, ∂Ωi is the boundary of Ωi, nnni the unit
exterior normal vector to ∂Ωi, Ni is the set of indices of the neighbors of Ωi. For
j ∈ Ni, Γi,j is the common interface.

Ωi Ωi

Fig. 1. Decomposition in subdomains. Left: Robin transmission conditions, right: second order
transmission conditions.

Following [1, 2, 3, 4], we introduce the boundary operators S i,j acting on func-
tions defined on Γi,j :

Si,jϕ = pi,jϕ+ qi,j(∂tϕ+∇Γi,j · (rrri,jϕ− si,j∇Γi,jϕ)),

with respectively∇Γ and∇Γ · the gradient and divergence operators on Γ . p i,j , qi,j ,
rrri,j , si,j are real parameters. qi,j = 0, will be referred to as a Robin operator. We
introduce the coupled problems

∂tui +∇ · (bbbiui − νi∇ui) + ciui = f in Ωi × (0, T )(
νi∂nnni − bbbi ·nnni

)
ui + Si,jui =(

νj∂nnni
− bbbj ·nnni

)
uj + Si,juj on Γi,j × (0, T ), j ∈ Ni.

(2)
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As coefficients ν and bbb are possibly discontinuous on the interface, we note, for
s ∈ Γi,j , νi(s) = limε→0 ν(s−εnnni). The same notation holds for bbb. Under regularity
assumptions, solving (1) is equivalent to solving (2) for i ∈ {1, ..., I} with ui the
restriction of u to Ωi. We now introduce an algorithm to solve (2). An initial guess
(gi,j) is given in L2((0, T )× Γi,j) for i ∈ {1, ..., I}, j ∈ Ni. We solve iteratively

∂tu
k
i +∇ · (bbbiuki − νi∇uki ) + ciu

k
i = f in Ωi × (0, T ),(

νi∂nnni
− bbbi ·nnni

)
uki + Si,juki =(

νj∂nnni
− bbbj ·nnni

)
uk−1
j + Si,juk−1

j on Γi,j × (0, T ), j ∈ Ni.
(3)

with the convention
(
νi∂nnni

− bbbi ·nnni
)
u1
i + Si,ju1

i = gi,j , j ∈ Ni.

Theorem 1. Assume bbbi ∈ (W 1,∞(Ωi))N , νi ∈ W 1,∞(Ωi), pi,j ∈ W 1,∞(Γi,j) with
pi,j > 0 a.e.. If qi,j = 0, or if qi,j = q > 0 with rrri,j ∈ (W 1,∞(Γi,j))N−1,
rrri,j = rrrj,i on Γi,j , si,j ∈ W 1,∞(Γi,j), si,j > 0, si,j = sj,i on Γi,j , the algorithm
(3) converges in each subdomain to the solution of problem ( 2).

Proof. We first need some results in differential geometry. For every j ∈ N i, the
normal vector nnni can be extended in a neighbourhood of Γ i,j as a smooth function
ñnni with length one. Let ψi,j ∈ C∞(Ωi), such that ψi,j ≡ 1 in a neighbourhood of
Γi,j , ψi,j ≡ 0 in a neighbourhood of Γi,k for k ∈ Ni, k �= j and

∑
j∈Ni

ψi,j > 0
on Ωi. Let ñnni be defined on a neighbourhood of the support of ψ i,j . We can extend
the tangential gradient and divergence operators in the support of ψ i,j by:

∇̃Γi,jϕ := ∇ϕ− (∂ñnni
ϕ)ñnni, ∇̃Γi,j ·ϕϕϕ := ∇ · (ϕϕϕ− (ϕϕϕ · ñnni)ñnni).

It is easy to see that (∇̃Γi,jϕ)|Γi,j
= ∇Γi,jϕ, (∇̃Γi,j ·ϕϕϕ)|Γi,j

= ∇Γi,j ·ϕϕϕ and for ϕϕϕ
and χ with support in supp(ψi,j), we have∫

Ωi

(∇̃Γi,j ·ϕϕϕ)χdx = −
∫
Ωi

ϕϕϕ · ∇̃Γi,jχdx. (4)

Now we prove Theorem 1. The key point is to obtain energy estimates for the homo-
geneous problem (2), i.e. for f = u0 = 0. We sketch the proof in the most difficult
case qi,j = q > 0. For the geometry, we consider the case depicted in the right part
of Fig. 1. In that case Ωi has at most two neighbours with

We set ‖ϕ‖i = ‖ϕ‖L2(Ωi), �ϕ�2
i = ‖√νi∇ϕ‖2L2(Ωi)

, ‖ϕ‖i,∞ = ‖ϕ‖L∞(Ωi),

‖ϕ‖i,1,∞ = ‖ϕ‖W 1,∞(Ωi) and βi =
∑

j∈Ni
ψi,jβi,j with βi,j =

√
pi,j+pj,i

2 .

1. We multiply the first equation of (3) by β2
i u

k
i , integrate onΩi×(0, t) then integrate

by parts in space,
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1
2
‖βiuki (t)‖2i +

∫ t

0

�βiu
k
i (τ, ·) �2

i dτ −
∫ t

0

∫
Ωi

βi(bbbi · ∇βi)(uki )2 dx dτ

+
∫ t

0

∫
Ωi

(ci +
1
2
∇ · bbbi)β2

i (u
k
i )

2 dx dτ −
∫ t

0

∫
Ωi

νi|∇βi|2(uki )2 dx dτ

−
∫ t

0

∫
Γi,j

β2
i,j(νi∂nnni

uki −
bbbi ·nnni

2
uki )u

k
i dσ dτ = 0. (5)

2. We multiply the first equation of (3) by ∂tuki , integrate onΩi× (0, t) and integrate
by parts in space,∫ t

0

‖∂tuki ‖2i dτ +
1
2

� uki (t) �2
i +

∫ t

0

∫
Ωi

(ciuki +∇ · (bbbiuki )) ∂tuki dx dτ

−
∫ t

0

∫
Γi,j

νi∂nnniu
k
i ∂tu

k
i dσ dτ = 0. (6)

3. We multiply the first equation of (3) by ∇̃Γi,j ·(ψ2
i,jrrri,ju

k
i ) integrate onΩi×(0, t)

integrate by parts in space to obtain∫ t

0

∫
Ωi

∂tu
k
i ∇̃Γi,j ·(ψ2

i,jrrri,ju
k
i ) dx dτ+

∫ t

0

∫
Ωi

∇·(bbbiuki ) ∇̃Γi,j ·(ψ2
i,jrrri,ju

k
i ) dx dτ

+
∫ t

0

∫
Ωi

ciu
k
i ∇̃Γi,j ·(ψ2

i,jrrri,ju
k
i ) dx dτ−

∫ t

0

∫
Γi,j

νi∂nnniu
k
i ∇Γi,j ·(rrri,juki ) dσ dτ

− 1
4

∫ t

0

‖ψi,j
√
νi si,j ∇∇̃Γi,j u

k
i ‖2i dτ ≤ C

∫ t

0

(‖√νi∇uki ‖2i + ‖βiuki ‖2i ) dτ. (7)

4. We multiply the first equation of (3) by −∇̃Γi,j · (ψ2
i,jsi,j ∇̃Γi,j u

k
i ) integrate on

Ωi × (0, t), integrate by parts in space using (4). Using that

−
∫ t

0

∫
Ωi

νi∇uki · ∇(∇̃Γi,j · (ψ2
i,jsi,j ∇̃Γi,j u

k
i )) dx dτ

≥ 1
2

∫ t

0

‖ψi,j
√
νi si,j ∇∇̃Γi,j , u

k
i )‖2i dτ − C

∫ t

0

‖√νi∇uki ‖2i dτ,

we obtain

1
2
‖ψi,j

√
si,j ∇̃Γi,j u

k
i (t)‖2i +

1
2

∫ t

0

‖ψi,j
√
νi si,j ∇∇̃Γi,j u

k
i )‖2i dτ

+
∫ t

0

∫
Ωi

ψ2
i,jsi,j ci|∇̃Γi,ju

k
i |2 dx dτ+

∫ t

0

∫
Γi,j

νi∂nnni
uki ∇Γi,j ·(si,j ∇Γi,j u

k
i ) dσ dτ

≤
∫ t

0

∫
Ωi

∇ · (bbbiuki ) ∇̃Γi,j · (ψ2
i,jsi,j ∇̃Γi,j u

k
i ) dx dτ + C

∫ t

0

‖√νi∇uki ‖2i dτ. (8)

We add (6), (7) and (8), multiply the result by q, and add it to (5). We use ab ≤
a2

2ε + ε
2b

2 in the integral terms in the right-hand side, simplify with the left-hand side,
and obtain
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1
2

(
‖βiuki (t)‖2i + q � uki (t) �2

i +q‖ψi,j
√
si,j ∇̃Γi,j u

k
i (t)‖2i

)
+
∫ t

0

�βiu
k
i (τ, ·)�2

i dτ

+
q

2

∫ t

0

‖∂tuki ‖2i dτ +
q

8

∫ t

0

‖ψi,j
√
νi si,j ∇∇̃Γi,j u

k
i ‖2i dτ

− q
∫ t

0

∫
Γi,j

νi∂nnni
uki

(
∂tu

k
i +∇Γi,j · (rrri,juki )−∇Γi,j · (si,j ∇Γi,j u

k
i )
)
dσ dτ

−
∫ t

0

∫
Γi,j

β2
i,j(νi∂nnni

uki −
bbbi ·nnni

2
uki )u

k
i dσ dτ ≤

q

2
(‖bbbi‖i,1,∞ + ‖ci‖i,∞)‖uki (t)‖2i

+ C

(∫ t

0

‖βiuki ‖2i dτ + q

∫ t

0

‖√νi∇uki ‖2i dτ
)
. (9)

Recalling that si,j = sj,i on Γi,j and rrri,j = rrrj,i on Γi,j , we use now the identity:

(
νi∂nnni

uki − bbbi ·nnniuki + Si,juki
)2 −

(
νi∂nnni

uki − bbbi ·nnniuki − Sj,iuki
)2

= 4
(
β2
i,j(νi∂nnni

uki −
bbbi ·nnni

2
uki )u

k
i + qνi∂nnni

uki (∂tu
k
i +∇Γi,j · (rrri,juki ))

)
− 4∇Γi,j · (si,j ∇Γi,j u

k
i ) + 2q(pi,j − pj,i − 2bbbi ·nnni)(∂tuki +∇Γi,j · (rrri,juki )

−∇Γi,j · (si,j ∇Γi,j u
k
i ))u

k
i + (pi,j + pj,i)(pi,j − pj,i − bbbi ·nnni)(uki )2. (10)

Replacing (10) into (9), we obtain

1
2

(
‖βiuki (t)‖2i + q � uki (t) �2

i +q‖ψi,j
√
si,j ∇̃Γi,j u

k
i (t)‖2i

)
+
∫ t

0

�βiu
k
i (τ, ·)�2

i dτ

+
q

2

∫ t

0

‖∂tuki ‖2i dτ +
1
4

∫ t

0

∫
Γi,j

(
νi∂nnni

uki − bbbi ·nnni uki − Sj,iuki
)2
dσ dτ

+
q

8

∫ t

0

‖ψi,j
√
νi si,j ∇∇̃Γi,j u

k
i ‖2i dτ ≤

1
4

∫ t

0

∫
Γi,j

(
νi∂nnni

uki − bbbi ·nnni uki + Si,juki
)2
dσ dτ

+
∫ t

0

∫
Γi,j

(pi,j+pj,i)(−pi,j+pj,i+bbbi·nnni)(uki )2 dσ dτ+
q

2
(‖bbbi‖i,1,∞+‖ci‖i,∞)‖uki (t)‖2i

+
q

2

∫ t

0

∫
Γi,j

(−pi,j+pj,i+2bbbi·nnni)(∂tuki+∇Γi,j ·(rrri,juki )−∇Γi,j ·(si,j ∇Γi,j u
k
i ))u

k
i dσ dτ

+ C

(∫ t

0

‖βiuki ‖2i dτ + q

∫ t

0

‖√νi∇uki ‖2i dτ
)
. (11)

In order to estimate the fourth term in the right-hand side of ( 11), we observe that∫ t

0

∫
Γi,j

(−pi,j+pj,i+2bbbi·nnni)uki ∂tuki dσ dτ =
1
2

∫
Γi,j

(−pi,j+pj,i+2bbbi·nnni)uki (t)2 dσ.

By the trace theorem in the right-hand side, we write:∫ t

0

∫
Γi,j

(−pi,j + pj,i + 2bbbi ·nnni)uki ∂tuki dσ dτ ≤ C‖uki (t)‖i‖
√
νi∇uki (t)‖i,
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and

‖uki (t)‖2i = 2
∫ t

0

∫
Ωi

(∂tuki )u
k
i ≤ 2

(∫ t

0

‖∂tuki ‖2i
) 1

2
(∫ t

0

‖uki ‖2i
) 1

2

, (12)

we obtain

q

2

∫ t

0

∫
Γi,j

(−pi,j + pj,i + 2bbbi ·nnni)uki ∂tuki dσ dτ

≤ q

8

∫ t

0

‖∂tuki ‖2i dτ +
q

4
� uki (t) �2

i +C
(∫ t

0

‖βiuki ‖2i dτ
)
. (13)

Moreover, integrating by parts and using the trace theorem, we have:

− q

2

∫ t

0

∫
Γi,j

∇Γi,j · (si,j ∇Γi,j u
k
i )(−pi,j + pj,i + 2bbbi ·nnni)uki dσ dτ

≤ q

16

∫ t

0

‖ψi,j
√
νi si,j ∇∇̃Γi,j u

k
i ‖2i dτ

+ C(
∫ t

0

‖∇̃Γi,j u
k
i ‖2i dτ +

∫ t

0

‖βiuki ‖2i dτ). (14)

Using (12), we estimate the third term in the right-hand side of (11) by:

q

2
(‖bbbi‖i,1,∞ + ‖ci‖i,∞)‖uki (t)‖2i ≤

q

8

∫ t

0

‖∂tuki ‖2i dτ + C

∫ t

0

‖βiuki ‖2i dτ. (15)

Replacing (14), (13) and (15) in (11), then using the transmission conditions, we
have:

1
2

(
‖βiuki (t)‖2i +

q

2
� uki (t) �2

i +q‖ψi,j
√
si,j ∇̃Γi,j u

k
i (t)‖2i

)
+
∫ t

0

�βiu
k
i (τ, ·)�2

i dτ+
q

4

∫ t

0

‖∂tuki ‖2i dτ+
q

16

∫ t

0

‖ψi,j
√
νi si,j ∇∇̃Γi,j u

k
i ‖2i dτ

+
1
4

∫ t

0

∫
Γi,j

(
νi∂nnniu

k
i − bbbi ·nnni uki − Sj,iuki

)2
dσ dτ

≤ 1
4

∫ t

0

∫
Γi,j

(
νj∂nnniu

k−1
j − bbbj ·nnni uk−1

j + Si,juk−1
j

)2
dσ dτ

+ C

(∫ t

0

‖βiuki ‖2i dτ +
q

2

∫ t

0

‖√νi∇uki ‖2i dτ
)
.

We now sum up over the interfaces j ∈ Ni, then over the subdomains for 1 ≤ i ≤ I ,
and over the iterations for 1 ≤ k ≤ K , the boundary terms cancel out, and with
α(t) = 1

4

∑
i∈{1,...,I}

∑
j∈Ni

∫ t
0

∫
Γi,j

(
νj∂nnni

u0
i − bbbj ·nnni u0

j + Si,ju0
j

)2
dσ dτ, we

obtain for any t ∈ (0, T ),∑
k∈{1,...,K}

∑
i∈{1,...,I}

(
‖βiuki (t)‖2i +

q

2
‖√νi∇uki (t)‖2i + ν0

∫ t

0

‖∇(βiuki )‖2i dτ
)

≤ α(t) + C
∑

k∈{1,...,K}

∑
i∈{1,...,I}

(∫ t

0

‖βiuki ‖2i dτ +
q

2

∫ t

0

‖√νi∇uki ‖2i dτ
)
.
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We conclude with Gronwall’s lemma that the sequence converges inL 2(0, T ;H1(Ωi)).

3 Numerical Results

We recall the discrete time nonconforming Schwarz waveform relaxation method
developed in [7].

Let Ti be the time partition in subdomainΩi, with Ni + 1 intervals I in, and time
step kin. We define interpolation operators I i and projection operators P i in each
subdomain as in [7], and we solve

∂t(IiUki ) +∇ · (bbbUki − νi∇Uki ) + ci U
k
i = P if in Ωi × (0, T ),(

νi∂nnni −
bbbi ·nnni

2
)
Uki + Si,jU

k
i =

P i
(
(νj∂nnni

− bbbj ·nnni
2

)Uk−1
j + S̃i,jU

k−1
j

)
on Γi,j × (0, T ),

with Si,j U = pi,j U + qi,j (∂t(IiU) + ∇Γi,j · (rrri,jU − si,j∇Γi,jU)), and

S̃i,j U = pi,j U + qi,j (∂t(IjU) +∇Γi,j · (rrri,jU − si,j∇Γi,jU)).
The coefficients pi,j and qi,j are defined through an optimization procedure, see

[1], restricted to values such that the subdomain problems are well-posed. The time
semi-discrete analysis was performed in [7] in the case ∇ · bbb = 0. For the space
discretization, we use the nonconforming approach in [ 5] extended to problem (1)
and order 2 transmission conditions, to allow non-matching grids in time and space
on the boundary. We have implemented the algorithm with P 1 finite elements in
space in each subdomain. Time windows are used in order to reduce the number of
iterations of the algorithm. To reduce the number of parameters and following [ 1],
we choose rrri,j =ΠΠΠΓi,jbbbj withΠΠΠΓi,j the tangential trace on Γi,j , and si,j = νj (even
though the present analysis does not cover this case). The optimized parameters are
constant along the interface. They correspond to a mean value of the parameters
obtained by a numerical optimization of the convergence factor.

We first give an example of a multidomain solution with one time window. The
physical domain is Ω = (0, 1)× (0, 2), the final time is T = 1. The initial value is
u0 = 0.25e−100((x−0.55)2+(y−1.7)2) and the right-hand side is f = 0. The domainΩ
is split into two subdomainsΩ1 = (0, 0.5)× (0, 2) and Ω2 = (0.5, 1)× (0, 2). The
reaction factor c is zero, the advection and diffusion coefficients are bbb1 = (0,−1),
ν1 = 0.001

√
y, and bbb2 = (−0.1, 0), ν2 = 0.1 sin(xy). The mesh size over the

interface and time step in Ω1 are h1 = 1/32 and k1 = 1/128, while in Ω2, h2 =
1/24 and k2 = 1/94. On Fig. 2, we observe, at final time T = 1, a very good
behavior of the multidomain solution after 5 iterations. The relative error with the
one domain solution is of the same order as the error of the scheme.

We analyze now the precision in time. The space mesh is conforming and the
converged solution is such that the residual is smaller than 10−8. We compute a vari-
ational reference solution on a time grid with 4,096 time steps. The nonconforming
solutions are interpolated on the previous grid to compute the error. We start with a
time grid with 128 time steps for the left domain and 94 time steps for the right do-
main. Thereafter the time steps are divided by 2 several times. Figure 3 (left) shows
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Fig. 2. Nonconforming DG-OSWR solution after 5 iterations.
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Fig. 3. Error between variational and DG-OSWR solutions versus the refinement in time (left),
and versus the iterations (right).

the norms of the error in L∞(I;L2(Ωi)) versus the number of refinements, for both
subdomains. First we observe the order 2 in time for the nonconforming case. This
fits the theoretical estimates, even though we have theoretical results only for Robin
transmission conditions. Moreover, the error obtained in the nonconforming case, in
the subdomain where the grid is finer, is nearly the same as the error obtained in the
conforming finer case.
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The computations are done using Order 2 transmissions. Indeed, the error be-
tween the multidomain and variational solutions decreases much faster with the Or-
der 2 transmissions conditions than with the Robin transmissions conditions as we
can see on Fig. 3 (right), in the conforming case.

We now consider advection-diffusion equations with discontinuous porosity:

ω∂tu+∇ · (bbbu− ν∇u) = 0.

The physical domain is Ω = (0, 1) × (0, 2), the final time is T = 1.5. The ini-
tial value is u0 = 0.5e−100((x−0.7)2+(y−1.5)2). Domain Ω is split into two sub-
domains Ω1 × (0, 1.5) and Ω2 × (0, 1.5) with ( 1

2 −
sin(2πs)

8 , 2s), 0 < s < 1 a
parametrization of the interface, as in Fig. 4. The advection and diffusion coeffi-
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Fig. 4. Domain decomposition with Ω1 (left) and Ω2 (right).

cients are bbb1 = (−sin(π2 (y − 1))cos(π(x − 1
2 )), 3cos(π2 (y − 1))sin(π(x − 1

2 ))),
ν1 = 0.003, ω1 = 0.1, and bbb2 = bbb1, ν2 = 0.01, ω2 = 1. We consider first a
conforming grid in space. The mesh size over the interface is h = 1/104 and time
step in Ω1 is k1 = 1/128, while in Ω2, k2 = 1/94. On Fig. 5, we observe, at fi-
nal time T = 1.5, that the approximate solution computed using ten time windows
and 3 iterations in each time window is close to the variational solution computed
in one time window on the conforming finer space-time grid as shown on the error.
We now consider nonconforming grids in space as shown on Fig. 4. The mesh size
over the interface and time step in Ω1 are h1 = 1/104 and k1 = 1/128, while in
Ω2, h2 = 1/81 and k2 = 1/94. On Fig. 6, we observe, at final time T = 1.5, that
the approximate solution computed using 5 iterations in one time window is close to
the variational solution computed on the conforming finer space-time grid. On Fig. 7
we observe the precision versus the mesh size and time step. The converged solu-
tion is such that the residual is smaller than 10−8. A variational reference solution is
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computed on a time grid with 2,048 time steps and 384 mesh grid. The space-time
nonconforming solutions are interpolated on the previous grid to compute the error.
We start with a time grid with 32 time steps and 24 mesh size for the left domain and
time steps 12 and 12 mesh size for the right domain and divide by 2 the time step
and mesh size several times. Figure 7 shows the norms of the error in L2(I;L2(Ωi))
versus the time steps, for both subdomains. We observe the order 2 for the noncon-
forming space-time case, even though we have theoretical results only for the time
semi-discretized case in [7].
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Fig. 5. Error between variational and DG-OSWR solutions, at final time, after 10 time win-
dows and 3 iterations per window.

4 Conclusions

We have analyzed the continuous algorithm for variable discontinuous coefficients
and general decompositions. We have shown numerically that the method preserves
the order of the one domain scheme in the case of discontinuous variable coefficients,
nonconforming grids in space and time and a curved interface. An analysis of the
influence of the decomposition in time windows is in progress.
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Fig. 6. DG-OSWR solution at final time, after 5 iterations.
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