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1 Introduction

In many scientific problems, adaptive finite element methods has been widely used
to improve the accuracy of numerical solutions. The general idea is to refine or adjust
the mesh such that the errors are “equally” distributed over the computational mesh,
with the aim of achieving a better accurate solution using an optimal number of
degrees of freedom. By using the information from the approximated solution and the
known data, the a posteriori error estimator provides the information about the size
and the distribution of the error of the finite element approximation. There is a large
numerical analysis literature on adaptive finite element methods, and various types
of a posteriori estimates have been proposed for different problems, see e.g. [ 1]. The
a posterior error estimate and adaptive finite element method were first introduced by
[2]. Since the later 1980s, much research work on a posteriori error estimate has been
developed including the residual type a posteriori error estimate [ 8], recovery type
a posteriori error estimate [16], a posteriori error estimate based on hierarchic basis
[4, 5], and so on. For the literature, the readers are referred to the books [ 1, 3, 12, 14],
the papers [6, 13, 15], and the references cited therein.

Let £2 ¢ R? be a bounded domain with Lipschitz boundary 042. We assume that
Ty, is a shape regular triangulation of (2. Let V;, C H'(2) be the corresponding
continuous piecewise linear finite element space associated with 77, and uy, € V}, be
a finite element approximation to a second order elliptic boundary value problem.

In this paper, we consider the adaptive finite element methods for a second or-
der elliptic boundary value problem. We propose a new a posteriori error estimate
which is motivated from the smoothing iteration of the multilevel iterative methods.
In particular, on current mesh 7;,, we solve the equation to obtain the finite element
solution uy,, then global refine the mesh 7;, to obtain the auxiliary mesh 7, /5. On
the fine mesh, we use a simple smoother such as Gauss—Seidel iteration with w, as
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the initial value. After m iterations, we obtain an approximation solution w ;, /5 ,,, of
finite element solution u, /» on fine mesh 7;, /5. Then take ||V (un — up/2,m)|| as the
a posteriori estimate to guide the mesh refinement on 7. In practice, it only need
small number of smoothing steps to obtain an efficient a posteriori error estimator
|V (un — up/2,m)|l, the computational cost is relatively small.

The rest of the paper is organized as follows: In Sect. 2 we propose the new a
posteriori error estimate and investigate its properties. And we describe adaptive fi-
nite element algorithm with our new a posteriori error estimator for a second order
elliptic boundary value problem. We present some numerical investigations in the
efficiency of the new a posteriori error estimate and the performance of the corre-
sponding adaptive finite element algorithm in Sect. 3.

2 A Posteriori Error Estimate

We consider the boundary value problem

—Au=f in{2,
_ @)
u=g on 042,

where 2 € R? is a bounded domain with Lipschitz boundary 942, for simplicity, 2
is assumed to be a polygonal domain.

In weak form, this problem reads: Findu € V = {v € H'(£2) : v|s; = g} such

that
a(u, 2)) = f(v) Vv € Hé(g)v 2

where
a(u,v):/ VuVudz,
fo)

and

f(v):/gfvda:.

Let 7;, be a shape regular triangulation of £2. Consider the C'° linear finite element
space V}, associated with 7, and defined by

Vi ={ve H () :v e P(r),Vr € Tp},

where P;(D) denotes the set of all polynomials defined of D C R? of total degree
< [. The discrete approximation to (1) is obtained in the standard way: Find u; €
Vi, NV such that

a(up,v) = f(v) Yo €V, N HY(Q). (3)

Suppose that {t; : i = 1,2,--- , N} are the basis for V,, and define the matrix A",
and a vector, F'*, via
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A?j = a(vi, ¥j) and El = f() Vi,j=1,2,---,N.

N
Then (3) is equivalent to solving A"U = F" with u, = > u¢; and U = (u;).
=1
Clearly, the matrix A" is a symmetric positive definite (SPD) matrix as a(-,-) is
SPD.

Let 7;,/» be a global refinement of the triangulation 7}, and V}, C V}, 2, suppose
un, up, /2 are then the discrete finite element solutions over 7, and 7, /-, respectively.
We have the following orthogonality relation between v —wu j, /o and uy, —uy, /2, Which
follows immediately from the Galerkin orthogonality.

IV (w = unpo)lls,.0 = IV (u—un)llg o = [V (un = uns2)|3 - (4)
Using the orthogonality (4), we have

[Vunp = Vunlg o _ Ve = Vunl§ o = Ve = Vun|f§ o
VU — Vupllg o VU — Vunllg o
B [Vu — Vuh/2|‘(2),9
IVu = Vup|[§ o

With the saturation assumption:
[Vu = Vupallo,0 < BIVu = Vupljo,o, B €0,1),

we have

IVup 2 — Vunllo,e
1—32< <. 5
VI=8 S R Ve S ©)

Numerical examples show that

Vup /2 — Vunllo,o _ @ ©)
[Vu — Vuglo,e 2

S0 ||V (up 2 — un)llo, can be used as a posteriori error estimate if u;, /, is at
hand. Notice that uy, /o — us, is of high frequency which can be easily obtained by
a few smoothing iterations. So we can use the ||V (up /2., — un)llo,e instead of
IV (up s2 — un) |0, after m steps of the a posteriori error estimate, where wy, /3 ,,, is
an approximation of u;, /, by the smoothing iterations, and the computational cost is
much cheaper. From (6), it is possible that

Vup2,m — Vunllo,o -~ ﬁ "
HVU—VU}LHO’Q 2 '

Note that if we have the approximation wy 2, on 7j /5, We then could obtain
Lyup, /o,m by interpolating uy, /5 ,, into the piecewise quadratic finite element spaces
on 7j,. In Sect. 3, the numerical examples show
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|V Iaup)2.0m — Vunllo,e
[Vu — Vup|lo,2

-1, (8)

it means that the error estimate ||V Iouy, /o, — Vun o, is an asymptotically exact
a posteriori error estimate for adaptive finite element methods.

For our error estimator, we find a better approximation w2 ,,, in a bigger space,
which shares the same principle as the hierarchical basis error estimator of [ 4]. Com-
paring with the hierarchal basis error estimator, we obtain the error estimator by
solving the problem on the finer mesh, and Bank and Smith solve an approximation
problem on the enriched subspace to estimate the error.

We now describe an algorithm to obtain our new a posteriori error estimate for
mesh 7;, in detail. Given the finite element solution u, the number of smoothing
iterations m, we carry out the following steps to obtain the new a posteriori error
estimate.

1. Global refine 7}, to obtain an auxiliary fine mesh 7;, /5.

2. Build the finite element space V7, /» on the fine mesh 7;, /5, and the corresponding
stiffness matrix A"/2 and load vector F'*/2,

3. Obtain I;L”/Quh, by interpolating u, from V}, to V;, /, taking I;L”/Quh, as the initial
value uy, /2 o and solving the linear equations

Ah/QU:Fh/Q (9)

in m smoothing iterations to obtain U™ = (u"). We then obtain an approxima-

tion of uy, 2
Np 2

_ m
Up/2,m = E uy i,
=1

where Ny, /o is the number of basis function of V;, /5.
4. For each 7 € 73, we calculate

Nrom = ||V(Uh - uh/Q,m)HO,T

as the error estimator on 7, and take

Mhm = D Mo

T€TH
as the a posteriori error estimate.

For the condition number of the finite element equations on adaptively refined
meshes {7; : | € N}, a mesh family {7; : I € A} is said to be nondegenerate if
there exists a constant p > 0 such that for all I € A and for all 7 € 7; there is a ball
of radius p - diam(7) contained in 7, where diam(7) denotes the diameter of 7.

Following [7], we assume that the basis {¢; : i = 1,2,--- , N} of V}, is a local
basis:

max cardinality{r € Ty, supp(v;) N7 £ 0} < C. (10)

We have the following estimates:
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Lemma 1. Suppose that the mesh 7;, is nondegenerate. Let A denote the matrix
corresponding to the inner product af(-,-), i.e., A?j = a(v;, ;) where {¢; : i =
1,2,---, N} are the standard linear Lagrange basis. Then the maximum eigenvalue
Amaz OF A™ is bounded by

Amaz < C. (11)

N
Proof. First note that if we setv = > v;4; then

i=1
a(v,v) = VEA"V,

where V' = (v;), because a(-, -) is bilinear. From the inverse estimate and (10), we

have
a(v,0) <Clolf=C Y Jollf . <C Y 0llf sc.r
T€T) TETH
<Ccy D w<coviv
TETy supp(; )NT#D
Then we obtain (11).

For solving the linear equations AU = F, a basic linear iterative method can be
written in the following form:

UM =U* + B(F — AU*), k=0,1,2,---, (12)

starting from an initial guess U° € R™.
The Richardson iterative scheme corresponds to (12) with B = ﬁ[ . Namely,

w

Ukt = Uk 4
p(A)

(F—AU*), k=0,1,2,---. (13)
We first discuss its “smoothing property”. Set w = 1 in (13) and define

1
S=1-——A.
p(A)
Theorem 1. For the smoother S, we have
[S™V[a < Cm™ V2|V,  VV R, (14)
where ||V o = (V, V)'/2 is the I2-norm in R™ and
IV]la=(AV, V)2, (15)

is the A-norm corresponding to the linear system we wish to solve.
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Proof. Since A is an symmetric positive define matrix, then we have A¢; = \;¢;
With Apin = A1 < A2 < -+ < Ay = Aaas (04, @5) = 945, and Yo € R™,

n
V= Z Ui(ﬁq;.
i=1

Then
SmV = <I— —1 A>mV— z”: (1 — As )mv-é'
p(A) i=1 )\m,a;c L
And
n \ 2m ,
m 2 _ 1— 1 2\,
IV =3 (1-522) o2
n s 2m s
= M\naz 1— i _rr 2
<; < /\maac> /\maac vl)
< )\max su 1—=x me} ’U?.
- {0@21( ) ; ’
Clearly,
1
1— 2m < )
0221( x) = 2m + 1

From (11), we have
)\m,a;c S C

Then, from the above inequalities, we obtain
18"V % < Cm™ VI3

On the quasi-uniformly meshes, the smoother operator .S have the well known
smoothing property

hfl
[S™vnlla < Cm””ﬂ

0,02, Yo € Vj,.

In the following, from a numerical example, we investigate the smoothing prop-
erty of Gauss—Seidel smoother on locally refined meshes. We solve the Laplace equa-
tion with the exact solution u = r3 sin(26),r = y/22 + y2 on a L-Shape domain
by the adaptive algorithm. We consider one of the adaptive level, we obtain the finite
element solution u;, on 73, then we get 7;, , (see Fig. 1 (Left)) by globally refining
T,. Set uy, as the initial value, and solve the Eq. (16) by executing m smoothing
steps on the 7}, /5, the results are plotted in Fig. 1 (Right), we see that the smoother
operator .S admits the similar property on the locally refined meshes.

It is obviously that we can obtain an approximation w, /5 ,,, for uy /o at any ac-
curacy with a larger m. And we known that the error between w, /o and u, 2, 1S
reduced quickly at the beginning of several iterative steps, then we need to do only



A New a Posteriori Error Estimate for Adaptive Finite Element Methods 69

1 0.025,
08 : ﬁ
06
002
oar (PR 2
TR
. Y
02 .
-04
001
-06 X
-08 REK|
-1 é j 0.005
-1 -05 0 05 1 o 20 40 60 80 100

Fig. 1. Left: Refined mesh. Right: Gauss—Seidel convergence history.

a few smoothing steps to obtain an approximation w, /5 ,,, for our a posteriori error
estimator. From our numerical examples in Sect. 3, m = 3 performs well.

The standard adaptive finite element methods through local refinement can be
written in the following loop

SOLVE — ESTIMATE — MARK — REFINE.

Using the above new a posteriori error estimator, the adaptive algorithm has the fol-
lowing general steps:

1. Construct an initial coarse mesh 7, representing sufficiently well the geometry
of the problem. Put & := 0.

2. Solve the discrete problem on 7}, to obtain the solution u.

3. For each element 7 € 7, compute the a posteriori error estimate. In detail, first
globally refine 7}, to obtain the fine mesh Tk then take u, as the initial value, use
the Gauss—Seidel iteration in m steps, solve the discrete problem on Tk,/ to obtain
the approximation u_,,,. Then we get the error estimator || Vuy — Vg, m o, ON
each € 7;.

4. If the estimated global error || Vuy — Vug,m |0, is sufficiently small then stop.
Otherwise, using a suitable marking strategy, decide which elements have to be
refined and construct the next mesh 751 through local refinement. Replace &
by k& + 1 and return to step 2.

One drawback of hierarchical type error estimators is the computational cost to
refine the mesh and assemble the matrix equation on the finer mesh. For our error
estimator, in step 3, we can assemble the matrix equation in the finer mesh 73, ,, by
using the element stiffness matrix in 73, as the finer mesh 7;, , is the global refine-
ment of 7;,, each element are refined into four children elements, the children’s ele-
ment stiffness matrix is the same as its farther’s element stiffness matrix for constant
coefficients. For smoothing coefficient we can also use the element stiffness matrix
on 7j, to assemble the stiffness matrix on 7;, ». Then we obtain the a posteriori error
estimator at a relatively small computational cost. Thus the adaptive algorithm with
our new a posteriori error estimate is efficient and simple in practice. We present
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some numerical examples in the following section to investigate in the performance
of the adaptive finite element algorithm.

3 Numerical Validation and Applications

In this section, we present some numerical examples to verify the results in Sect. 2
with the model problem

—Au=f in {2,
(16)
u=g ondf2,
where 2 € R? is a bounded domain with Lipschitz boundary 912.

Forar e 7y,

nr = [Vupo — Vaupllo,r, and  my = [[Vuy 2 — Vupl|o,o,

the new a posteriori error estimator in 7 is

Nrom = ||vuh,/2,m, - Vuh||0,‘l'7 and Nh,m = ||vuh,/2,m, - VUh' 0,02

To measure the accuracy of 7,,, we use the index 6., 6, defined by

nhqm

0 fhrym __ hm
[Vu — Vup|lo,n

= and 6’ =
[Vu — Vunllo "

Accordingly, for the error estimator 1 ,,, = ||V I2up /2 m — Vg o, and nj, ., =
IV I2up, j2,m —Vun|lo,0, Where Iouy, /o, is a piecewise quadratic polynomial which
obtained by the interpolation postprocessing. We define

/
0 I 777—,m

9 — U;LJYL
T ||Vu—Vuh|0,T’ h [Vu = Vugllo,0

In the following examples, we investigate the performance of our new a posteriori
error estimator. In detail, we consider two types of methods for local mesh refine-
ment, one based on Centroidal Voronoi Delaunay Triangulation(CVDT) [ 10, 11], the
other on bisection, 3 Gauss—Seidel iterations are used to obtain the approximation
Up/2,m, and then ny, - is used as the error estimator. We implement our numerical
tests with the Matlab package :FEM [9].

Example 1 In this example, we solve (16) with f = 0 and the exact solution
u = r3sin(20),r = /22 +y? on the L-Shape domain 2 = {-1 < z,y <
13\ {0 <2 <1,—-1 <y < 0}. The mesh refinement is based on CVDT. The results
are shown in Fig. 2. We see that

[V — Vup|lo = O(N~V2),
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HVU — VIQ'U/h/Q,BHO = O(N_O"?), ||Vuh/2 — V’U,h/g’gHQ = O(N_0'67).
For the efficient index, it shows that
0 — ?, 6;, — 1.

Notice that the decay of | Vu — Vup||o is quasi-optimal.

(a) (b)
=
\ = T
\\\\&\
(c) (d)

Fig. 2. Results of example 1. (a): initial mesh; (b): refined mesh after 4 refinements; (c): errors;
(d): effectivity index.

Example 2 In this example, as in Example 1, we solve (16) with the exact solution

u=r3 sin(%&) on the L-Shape domain. But, we use the bisection for local mesh

refinement. We obtain similar results; Fig. 3 plots the initial mesh and the adaptively
refined mesh after 8 adaptive iterations. From Fig. 3, we see that
IVu = Vunllo = O(N~1/?),

HVU - VIguh/Q’(gHQ = O(N_O'85), ||Vuh/2 - V’U,h/g’gHQ = O(N_3/4).
For the efficient index, it shows that

0p — —, 6;, — 1.
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Notice that the decay of || Vu — Vuy||o is also quasi-optimal.

(©) (d)

Fig. 3. Results of example 2. (a): initial mesh; (b): refined mesh after 8 refinements; (c): errors;
(d): effectivity index.

Example 3 In this example, we solve (16) with f = 1 and the exact solution
u = y/i(r—a)— L2 r = /22 4+ y? on a crack domain 2 = {|z| + |y| <
1}\ {0 <z < 1,y = 0}. Figure 4 plots the initial mesh and the adaptively refined
mesh after 8 adaptive iterations, and shows the performance of the error estimator.

We see that
|V — Vg |lo = O(N /),

||Vu - VIQU;}L/Q’?,HO = O(N70‘65), HVuh/Q - Vuh/273||0 = O(N70’65).
For the efficient index, it shows that
3
0n, — g, 9% — 1.

The decay of |Vu — Vuy||o s also quasi-optimal.
Finally, based on the numerical observation and rough analysis, we may propose
a conjecture on the convergence property of the finite element method.
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(c) (d)

Fig. 4. Results of example 3. (a): initial mesh; (b): refined mesh after 8 refinements; (c): errors;
(d): efficient index.

Conjecture For linear triangular element approximation on a sequence of trian-
gulations 7}, if the convergence rate is optimal in the sense of

lu —unls < ONTV2,

where N is the total number of unknowns. Then there holds

_ 3 , — I
Jun —ngall V8 () gnq Mun—ounpl gy, o)
flu—unli 2 lu = unls
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