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1 Introduction

In many scientific problems, adaptive finite element methods has been widely used
to improve the accuracy of numerical solutions. The general idea is to refine or adjust
the mesh such that the errors are “equally” distributed over the computational mesh,
with the aim of achieving a better accurate solution using an optimal number of
degrees of freedom. By using the information from the approximated solution and the
known data, the a posteriori error estimator provides the information about the size
and the distribution of the error of the finite element approximation. There is a large
numerical analysis literature on adaptive finite element methods, and various types
of a posteriori estimates have been proposed for different problems, see e.g. [ 1]. The
a posterior error estimate and adaptive finite element method were first introduced by
[2]. Since the later 1980s, much research work on a posteriori error estimate has been
developed including the residual type a posteriori error estimate [ 8], recovery type
a posteriori error estimate [16], a posteriori error estimate based on hierarchic basis
[4, 5], and so on. For the literature, the readers are referred to the books [ 1, 3, 12, 14],
the papers [6, 13, 15], and the references cited therein.

LetΩ ⊂ R2 be a bounded domain with Lipschitz boundary ∂Ω. We assume that
Th is a shape regular triangulation of Ω. Let Vh ⊂ H1(Ω) be the corresponding
continuous piecewise linear finite element space associated with Th, and uh ∈ Vh be
a finite element approximation to a second order elliptic boundary value problem.

In this paper, we consider the adaptive finite element methods for a second or-
der elliptic boundary value problem. We propose a new a posteriori error estimate
which is motivated from the smoothing iteration of the multilevel iterative methods.
In particular, on current mesh Th, we solve the equation to obtain the finite element
solution uh, then global refine the mesh Th to obtain the auxiliary mesh Th/2. On
the fine mesh, we use a simple smoother such as Gauss–Seidel iteration with uh as
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the initial value. After m iterations, we obtain an approximation solution u h/2,m of
finite element solution uh/2 on fine mesh Th/2. Then take ‖∇(uh − uh/2,m)‖ as the
a posteriori estimate to guide the mesh refinement on Th. In practice, it only need
small number of smoothing steps to obtain an efficient a posteriori error estimator
‖∇(uh − uh/2,m)‖, the computational cost is relatively small.

The rest of the paper is organized as follows: In Sect. 2 we propose the new a
posteriori error estimate and investigate its properties. And we describe adaptive fi-
nite element algorithm with our new a posteriori error estimator for a second order
elliptic boundary value problem. We present some numerical investigations in the
efficiency of the new a posteriori error estimate and the performance of the corre-
sponding adaptive finite element algorithm in Sect. 3.

2 A Posteriori Error Estimate

We consider the boundary value problem{
−Δu = f in Ω,
u = g on ∂Ω,

(1)

where Ω ∈ R2 is a bounded domain with Lipschitz boundary ∂Ω, for simplicity, Ω
is assumed to be a polygonal domain.

In weak form, this problem reads: Find u ∈ V = {v ∈ H 1(Ω) : v|∂Ω = g} such
that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω), (2)

where

a(u, v) =
∫
Ω

∇u∇vdx,

and

f(v) =
∫
Ω

fvdx.

Let Th be a shape regular triangulation of Ω. Consider the C 0 linear finite element
space Vh associated with Th and defined by

Vh = {v ∈ H1(Ω) : v ∈ P1(τ), ∀τ ∈ Th},

where Pl(D) denotes the set of all polynomials defined of D ⊆ R2 of total degree
≤ l. The discrete approximation to (1) is obtained in the standard way: Find uh ∈
Vh ∩ V such that

a(uh, v) = f(v) ∀v ∈ Vh ∩H1
0 (Ω). (3)

Suppose that {ψi : i = 1, 2, · · · , N} are the basis for Vh, and define the matrix Ah,
and a vector, F h, via
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Ahij := a(ψi, ψj) and Fhi := f(ψi) ∀i, j = 1, 2, · · · , N.

Then (3) is equivalent to solving AhU = Fh with uh =
N∑
i=1

uiψi and U = (ui).

Clearly, the matrix Ah is a symmetric positive definite (SPD) matrix as a(·, ·) is
SPD.

Let Th/2 be a global refinement of the triangulation Th and Vh ⊂ Vh/2, suppose
uh, uh/2 are then the discrete finite element solutions over Th and Th/2, respectively.
We have the following orthogonality relation between u−uh/2 and uh−uh/2, which
follows immediately from the Galerkin orthogonality.

‖∇(u− uh/2)‖20,Ω = ‖∇(u− uh)‖20,Ω − ‖∇(uh − uh/2)‖20,Ω. (4)

Using the orthogonality (4), we have

‖∇uh/2 −∇uh‖20,Ω
‖∇u−∇uh‖20,Ω

=
‖∇u−∇uh‖20,Ω − ‖∇u−∇uh/2‖20,Ω

‖∇u−∇uh‖20,Ω

= 1−
‖∇u−∇uh/2‖20,Ω
‖∇u−∇uh‖20,Ω

.

With the saturation assumption:

‖∇u−∇uh/2‖0,Ω ≤ β‖∇u−∇uh‖0,Ω, β ∈ [0, 1),

we have √
1− β2 ≤

‖∇uh/2 −∇uh‖0,Ω
‖∇u−∇uh‖0,Ω

≤ 1. (5)

Numerical examples show that

‖∇uh/2 −∇uh‖0,Ω
‖∇u−∇uh‖0,Ω

→
√

3
2
. (6)

So ‖∇(uh/2 − uh)‖0,Ω can be used as a posteriori error estimate if uh/2 is at
hand. Notice that uh/2 − uh is of high frequency which can be easily obtained by
a few smoothing iterations. So we can use the ‖∇(uh/2,m − uh)‖0,Ω instead of
‖∇(uh/2 − uh)‖0,Ω after m steps of the a posteriori error estimate, where uh/2,m is
an approximation of uh/2 by the smoothing iterations, and the computational cost is
much cheaper. From (6), it is possible that

‖∇uh/2,m −∇uh‖0,Ω
‖∇u−∇uh‖0,Ω

→
√

3
2
. (7)

Note that if we have the approximation uh/2,m on Th/2, we then could obtain
I2uh/2,m by interpolating uh/2,m into the piecewise quadratic finite element spaces
on Th. In Sect. 3, the numerical examples show
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‖∇I2uh/2,m −∇uh‖0,Ω
‖∇u−∇uh‖0,Ω

→ 1, (8)

it means that the error estimate ‖∇I2uh/2,m − ∇uh‖0,Ω is an asymptotically exact
a posteriori error estimate for adaptive finite element methods.

For our error estimator, we find a better approximation uh/2,m in a bigger space,
which shares the same principle as the hierarchical basis error estimator of [ 4]. Com-
paring with the hierarchal basis error estimator, we obtain the error estimator by
solving the problem on the finer mesh, and Bank and Smith solve an approximation
problem on the enriched subspace to estimate the error.

We now describe an algorithm to obtain our new a posteriori error estimate for
mesh Th in detail. Given the finite element solution uh, the number of smoothing
iterations m, we carry out the following steps to obtain the new a posteriori error
estimate.

1. Global refine Th to obtain an auxiliary fine mesh Th/2.
2. Build the finite element space Vh/2 on the fine mesh Th/2, and the corresponding

stiffness matrix Ah/2 and load vector F h/2.
3. Obtain Ih/2h uh by interpolating uh from Vh to Vh/2, taking Ih/2h uh as the initial

value uh/2,0 and solving the linear equations

Ah/2U = Fh/2 (9)

in m smoothing iterations to obtain Um = (umi ). We then obtain an approxima-
tion of uh/2

uh/2,m =
Nh/2∑
i=1

umi ψi,

where Nh/2 is the number of basis function of Vh/2.
4. For each τ ∈ Th, we calculate

ητ,m = ‖∇(uh − uh/2,m)‖0,τ

as the error estimator on τ , and take

η2
h,m =

∑
τ∈Th

η2
τ,m

as the a posteriori error estimate.

For the condition number of the finite element equations on adaptively refined
meshes {Tl : l ∈ N}, a mesh family {Tl : l ∈ N} is said to be nondegenerate if
there exists a constant ρ > 0 such that for all l ∈ N and for all τ ∈ T l there is a ball
of radius ρ · diam(τ) contained in τ , where diam(τ) denotes the diameter of τ .

Following [7], we assume that the basis {ψi : i = 1, 2, · · · , N} of Vh is a local
basis:

max
1≤i≤N

cardinality{τ ∈ Th, supp(ψi) ∩ τ �= ∅} ≤ C. (10)

We have the following estimates:
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Lemma 1. Suppose that the mesh Th is nondegenerate. Let Ah denote the matrix
corresponding to the inner product a(·, ·), i.e., Ah

ij = a(ψi, ψj) where {ψi : i =
1, 2, · · · , N} are the standard linear Lagrange basis. Then the maximum eigenvalue
λmax of Ah is bounded by

λmax ≤ C. (11)

Proof. First note that if we set v =
N∑
i=1

viψi then

a(v, v) = V tAhV,

where V = (vi), because a(·, ·) is bilinear. From the inverse estimate and (10), we
have

a(v, v) ≤ C‖v‖21 = C
∑
τ∈Th

‖v‖21,τ ≤ C
∑
τ∈Th

‖v‖20,∞,τ

≤ C
∑
τ∈Th

∑
supp(ψi)∩τ 
=∅

v2
i ≤ CV tV.

Then we obtain (11).

For solving the linear equations AU = F , a basic linear iterative method can be
written in the following form:

Uk+1 = Uk +B(F −AUk), k = 0, 1, 2, · · · , (12)

starting from an initial guess U 0 ∈ Rn.
The Richardson iterative scheme corresponds to (12) with B = ω

ρ(A)I . Namely,

Uk+1 = Uk +
ω

ρ(A)
(F −AUk), k = 0, 1, 2, · · · . (13)

We first discuss its “smoothing property”. Set ω = 1 in (13) and define

S = I − 1
ρ(A)

A.

Theorem 1. For the smoother S, we have

‖SmV ‖A ≤ Cm−1/2‖V ‖0, ∀V ∈ Rn, (14)

where ‖V ‖0 = (V, V )1/2 is the l2-norm in Rn and

‖V ‖A = (AV, V )1/2, (15)

is the A-norm corresponding to the linear system we wish to solve.
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Proof. Since A is an symmetric positive define matrix, then we have Aφ i = λiφi
with λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax, (φi, φj) = δij , and ∀v ∈ Rn,

V =
n∑
i=1

viφi.

Then

SmV =
(
I − 1

ρ(A)
A

)m
V =

n∑
i=1

(
1− λi

λmax

)m
viφi.

And

‖SmV ‖2A =
n∑
i=1

(
1− λi

λmax

)2m

v2
i λi

= λmax

(
n∑
i=1

(
1− λi

λmax

)2m
λi
λmax

v2
i

)

≤ λmax

{
sup

0≤x≤1
(1 − x)2mx

} n∑
i=1

v2
i .

Clearly,

sup
0≤x≤1

(1− x)2mx ≤ 1
2m+ 1

.

From (11), we have
λmax ≤ C.

Then, from the above inequalities, we obtain

‖SmV ‖2A ≤ Cm−1‖V ‖20.

On the quasi-uniformly meshes, the smoother operator S have the well known
smoothing property

‖Smvh‖A ≤ C
h−1

m1/2
‖vh‖0,Ω, ∀vh ∈ Vh.

In the following, from a numerical example, we investigate the smoothing prop-
erty of Gauss–Seidel smoother on locally refined meshes. We solve the Laplace equa-
tion with the exact solution u = r

2
3 sin(2

3θ), r =
√
x2 + y2 on a L-Shape domain

by the adaptive algorithm. We consider one of the adaptive level, we obtain the finite
element solution uh on Th, then we get Th/2 (see Fig. 1 (Left)) by globally refining
Th. Set uh as the initial value, and solve the Eq. (16) by executing m smoothing
steps on the Th/2, the results are plotted in Fig. 1 (Right), we see that the smoother
operator S admits the similar property on the locally refined meshes.

It is obviously that we can obtain an approximation uh/2,m for uh/2 at any ac-
curacy with a larger m. And we known that the error between u h/2 and uh/2,mis
reduced quickly at the beginning of several iterative steps, then we need to do only



A New a Posteriori Error Estimate for Adaptive Finite Element Methods 69

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
0.005

0.01

0.015

0.02

0.025

Fig. 1. Left: Refined mesh. Right: Gauss–Seidel convergence history.

a few smoothing steps to obtain an approximation uh/2,m for our a posteriori error
estimator. From our numerical examples in Sect. 3, m = 3 performs well.

The standard adaptive finite element methods through local refinement can be
written in the following loop

SOLVE → ESTIMATE→ MARK → REFINE.

Using the above new a posteriori error estimator, the adaptive algorithm has the fol-
lowing general steps:

1. Construct an initial coarse mesh T0 representing sufficiently well the geometry
of the problem. Put k := 0.

2. Solve the discrete problem on Tk to obtain the solution uk.
3. For each element τ ∈ Tk compute the a posteriori error estimate. In detail, first

globally refine Tk to obtain the fine mesh T ′
k , then take uk as the initial value, use

the Gauss–Seidel iteration inm steps, solve the discrete problem on T ′
k to obtain

the approximation uk,m. Then we get the error estimator ‖∇uk−∇uk,m‖0,τ on
each τ ∈ Tk.

4. If the estimated global error ‖∇uk −∇uk,m‖o,Ω is sufficiently small then stop.
Otherwise, using a suitable marking strategy, decide which elements have to be
refined and construct the next mesh Tk+1 through local refinement. Replace k
by k + 1 and return to step 2.

One drawback of hierarchical type error estimators is the computational cost to
refine the mesh and assemble the matrix equation on the finer mesh. For our error
estimator, in step 3, we can assemble the matrix equation in the finer mesh Th/2 by
using the element stiffness matrix in Th, as the finer mesh Th/2 is the global refine-
ment of Th, each element are refined into four children elements, the children’s ele-
ment stiffness matrix is the same as its farther’s element stiffness matrix for constant
coefficients. For smoothing coefficient we can also use the element stiffness matrix
on Th to assemble the stiffness matrix on Th/2. Then we obtain the a posteriori error
estimator at a relatively small computational cost. Thus the adaptive algorithm with
our new a posteriori error estimate is efficient and simple in practice. We present
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some numerical examples in the following section to investigate in the performance
of the adaptive finite element algorithm.

3 Numerical Validation and Applications

In this section, we present some numerical examples to verify the results in Sect. 2
with the model problem {

−Δu = f in Ω,
u = g on ∂Ω,

(16)

where Ω ∈ R2 is a bounded domain with Lipschitz boundary ∂Ω.
For a τ ∈ Th,

ητ = ‖∇uh/2 −∇uh‖0,τ , and ηh = ‖∇uh/2 −∇uh‖0,Ω,

the new a posteriori error estimator in τ is

ητ,m = ‖∇uh/2,m −∇uh‖0,τ , and ηh,m = ‖∇uh/2,m −∇uh‖0,Ω.

To measure the accuracy of ηm, we use the index θτ , θh defined by

θτ =
ητ,m

‖∇u−∇uh‖0,τ
, and θh =

ηh,m
‖∇u−∇uh‖0,Ω

.

Accordingly, for the error estimator η ′
τ,m = ‖∇I2uh/2,m−∇uh‖0,τ and η′h,m =

‖∇I2uh/2,m−∇uh‖0,Ω, where I2uh/2,m is a piecewise quadratic polynomial which
obtained by the interpolation postprocessing. We define

θ′τ =
η′τ,m

‖∇u−∇uh‖0,τ
, θ′h =

η′h,m
‖∇u−∇uh‖0,Ω

.

In the following examples, we investigate the performance of our new a posteriori
error estimator. In detail, we consider two types of methods for local mesh refine-
ment, one based on Centroidal Voronoi Delaunay Triangulation(CVDT) [ 10, 11], the
other on bisection, 3 Gauss–Seidel iterations are used to obtain the approximation
uh/2,m, and then ηh,τ is used as the error estimator. We implement our numerical
tests with the Matlab package iFEM [9].

Example 1 In this example, we solve (16) with f = 0 and the exact solution
u = r

2
3 sin(2

3θ), r =
√
x2 + y2 on the L-Shape domain Ω = {−1 ≤ x, y ≤

1}\{0 ≤ x ≤ 1,−1 ≤ y ≤ 0}. The mesh refinement is based on CVDT. The results
are shown in Fig. 2. We see that

‖∇u−∇uh‖0 = O(N−1/2), ,
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‖∇u−∇I2uh/2,3‖0 = O(N−0.7), ‖∇uh/2 −∇uh/2,3‖0 = O(N−0.67).

For the efficient index, it shows that

θh →
√

3
2
, θ′h → 1.

Notice that the decay of ‖∇u−∇uh‖0 is quasi-optimal.
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Fig. 2. Results of example 1. (a): initial mesh; (b): refined mesh after 4 refinements; (c): errors;
(d): effectivity index.

Example 2 In this example, as in Example 1, we solve (16) with the exact solution
u = r

2
3 sin(2

3θ) on the L-Shape domain. But, we use the bisection for local mesh
refinement. We obtain similar results; Fig. 3 plots the initial mesh and the adaptively
refined mesh after 8 adaptive iterations. From Fig. 3, we see that

‖∇u−∇uh‖0 = O(N−1/2),

‖∇u−∇I2uh/2,3‖0 = O(N−0.85), ‖∇uh/2 −∇uh/2,3‖0 = O(N−3/4).

For the efficient index, it shows that

θh →
√

3
2
, θ′h → 1.
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Notice that the decay of ‖∇u−∇uh‖0 is also quasi-optimal.
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Fig. 3. Results of example 2. (a): initial mesh; (b): refined mesh after 8 refinements; (c): errors;
(d): effectivity index.

Example 3 In this example, we solve (16) with f = 1 and the exact solution

u =
√

1
2 (r − x) − 1

4r
2, r =

√
x2 + y2 on a crack domain Ω = {|x| + |y| <

1} \ {0 ≤ x ≤ 1, y = 0}. Figure 4 plots the initial mesh and the adaptively refined
mesh after 8 adaptive iterations, and shows the performance of the error estimator.
We see that

‖∇u−∇uh‖0 = O(N−1/2),

‖∇u−∇I2uh/2,3‖0 = O(N−0.65), ‖∇uh/2 −∇uh/2,3‖0 = O(N−0.65).

For the efficient index, it shows that

θh →
√

3
2
, θ′h → 1.

The decay of ‖∇u−∇uh‖0 is also quasi-optimal.
Finally, based on the numerical observation and rough analysis, we may propose

a conjecture on the convergence property of the finite element method.
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Fig. 4. Results of example 3. (a): initial mesh; (b): refined mesh after 8 refinements; (c): errors;
(d): efficient index.

Conjecture For linear triangular element approximation on a sequence of trian-
gulations Th, if the convergence rate is optimal in the sense of

‖u− uh‖1 ≤ CN−1/2,

where N is the total number of unknowns. Then there holds

‖uh − uh/2‖1
‖u− uh‖1

→
√

3
2

(N →∞) and
‖uh − I2uh/2‖1
‖u− uh‖1

→ 1 (N →∞).
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