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1 Introduction 9

In recent years, attention has been devoted to the development of efficient iterative 10

solvers for the solution of the linear system of equations arising from the discon- 11

tinuous Galerkin (DG) discretization of a range of model problems. In the frame- 12

work of two level preconditioners, scalable non-overlapping Schwarz methods have 13

been proposed and analyzed for the h–version of the DG method in the articles 14

[1, 2, 6, 7, 9]. Recently, in [3] it has been proved that the non-overlapping Schwarz 15

preconditioners can also be successfully employed to reduce the condition number 16

of the stiffness matrices arising from a wide class of high–order DG discretizations 17

of elliptic problems. In this article we aim to validate the theoretical results derived 18

in [3] for the multiplicative Schwarz preconditioner and for its symmetrized variant 19

by testing their numerical performance. 20

2 Model Problem and DG Discretization 21

In this section we introduce the model problem under consideration and its DG ap- 22

proximation, working, for the sake of simplicity, with the SIPG formulation proposed 23

in [4]. 24

25

We consider, for simplicity, the weak formulation of the Poisson problem with 26

homogeneous Dirichlet boundary conditions: find U ∈ H1
0 (Ω) such that 27

(∇U ,∇v)Ω = ( f ,v)Ω ∀v ∈ H1
0 (Ω), (1)

where Ω is a bounded polygonal domain in R
d , d = 2,3, f ∈ L2(Ω) is a given source 28

term and (·, ·)Ω is the standard inner product in [L2(Ω)]d . 29

30

∗ PH acknowledges the financial support of the EPSRC under the grant EP/H005498.

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1__26, © Springer-Verlag Berlin Heidelberg 2013

mailto:paola.antonietti@polimi.it
mailto:Paul.Houston@nottingham.ac.uk


Page 240

UN
CO

RR
EC

TE
D

PR
O
O
F

Paola F. Antonietti and Paul Houston

Let Th be a shape-regular, not necessarily matching partition of Ω into disjoint 31

open elements K (with diameter hK ), where each K is the affine image of a fixed 32

master element K̂ , i.e., K =FK (K̂ ), where K̂ is either the open unit d-simplex or 33

the d-hypercube in R
d , d = 2,3. We define the mesh-size h by h := maxK ∈Th hK , 34

and assume that Th satisfies a bounded local variation property: for any pair of 35

neighboring elements K1,K2 ∈Th, hK1 ≈ hK2 . 36

For a given approximation order p≥ 1, we define the DG space 37

Vh,p := {v ∈ L2(Ω) : v|K ◦FK ∈M p(K̂ ) ∀K ∈ Th}, 38

where M p(K̂ ) is either the space of polynomials of degree at most p on K̂ , if K̂ 39

is the reference d-simplex, or the space of polynomials of degree at most p in each 40

variable on K̂ , if K̂ is the reference d-hypercube. 41

Next, for any internal face F = ∂K +∩∂K − shared by two adjacent elements 42

K ±, with outward unit normal vectors n±, respectively, we define 43

[[τ]] := τ+ ·n++ τ− ·n−, [[v]] := v+n++ v−n−,

{{τ}} := (τ++ τ−)/2, {{v}} := (v++ v−)/2,

where τ± and v± denote the traces on ∂K ± taken from the interior of K ± of the 44

(sufficiently regular) functions τ and v, respectively (cf. [5]). On a boundary face 45

F = ∂K ∩∂Ω , we set [[τ]] := τ ·n, [[v]] := vn, {{τ}} := τ , and {{v}} := v. 46

47

We collect all interior (respectively, boundary) faces in the set F I
h (respectively, 48

FB
h ), define Fh := F I

h ∪FB
h , and introduce on Vh,p×Vh,p the following the bilinear 49

form 50

A (u,v) := ∑
K ∈Th

∫
K

∇u ·∇v dx+ ∑
K ∈Th

∫
K

∇u ·R([[v]]) dx

+ ∑
K ∈Th

∫
K

R([[u]]) ·∇v dx+ ∑
F∈Fh

∫
F

α
p2

|F | [[u]] · [[v]] ds,

where α > 0 is a parameter at our disposal. The lifting operator R(·) is defined as: 51

R(τ) := ∑F∈Fh
rF(τ), where rF : [L2(F)]d → [Vh,p]

d is given by 52

∫
Ω

rF(τ) ·η dx :=−
∫

F
τ · {{η}} ds ∀η ∈ [Vh,p]

d ∀F ∈Fh.

The DG discretization of problem (1) reads: 53

Find u ∈Vh,p such that A (u,v) =
∫

Ω
f v dx ∀v ∈Vh,p. (2)

Let ϕ j, j = 1, . . . ,N p
h := dim(Vh,p), be a set of basis functions that span Vh,p, then 54

(2) can be written in the following equivalent form: Find u ∈ R
N p

h such that Au = f, 55

where here (and in the following) we use the bold notation to denote the spaces of 56
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degrees of freedom (vectors) and discrete linear operators (matrices). The following 57

result provides an estimate for the spectral condition number of A; we refer to [3] for 58

the proof. 59

Proposition 1 ([3]). For a set of basis functions which are orthonormal on the refer- 60

ence element K̂ ⊂R
d, d = 2,3, the condition number κ(A) of the stiffness matrix A 61

can be bounded by 62

κ(A)� α
p4

h2 .

Remark 1. We are working, for the sake of simplicity, with the SIPG formulation 63

proposed in [4], but the results shown in Proposition 1 and in Theorem 1 below also 64

hold for a wide class of DG methods; we refer to [3] for details. 65

3 Two Level Non-overlapping Schwarz Preconditioners 66

In this section we introduce the non-overlapping Schwarz preconditioners. 67

68

Subdomain partition. We decompose the domain Ω into N non-overlapping sub- 69

domains Ωi, i.e., Ω = ∪N
i=1Ω i. Next, we consider two levels of nested partitions of 70

the domain Ω : (i) a coarse partition TH (with mesh-size H); (ii) a fine partition Th 71

(with mesh-size h). We will suppose that the subdomain partition does not cut any 72

element of TH (and therefore of Th). 73

74

Local solvers. For i = 1, . . . ,N, we define the local DG spaces as 75

V i
h,p := {v ∈ L2(Ωi) : v|K ◦FK ∈M p(K̂ ) ∀K ∈ Th,K ⊂Ωi}.

Denoting by RT
i : V i

h,p −→Vh,p the classical injection operator from V i
h,p to Vh,p, the 76

local solvers Ai : V i
h,p×V i

h,p −→ R are defined as 77

Ai(ui,vi) := A (RT
i ui,R

T
i vi) ∀ui,vi ∈V i

h,p, i = 1, . . . ,N. (3)

Coarse solver. For an integer 0≤ q≤ p, we define the coarse space V 0
H,q as 78

V 0
H,q := {v ∈ L2(Ω) : v|D ◦FD ∈M

qD (K̂ ) ∀ D ∈TH},

and the coarse solver A0 : V 0
H,q×V 0

H,q −→R as 79

A0(u0,v0) := A (RT
0 u0,R

T
0 v0) ∀u0,v0 ∈V 0

H,q, (4)

where RT
0 : V 0

H,q −→Vh,p is the classical injection operator from V 0
H,q to Vh,p. 80

81

Let the local projection operators be defined as 82
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P̃i : Vh,p→V i
h,p : Ai(P̃iu,R

T
i vi) := A (u,RT

i vi) ∀vi ∈V i
h,p, i = 1, . . . ,N,

P̃0 : Vh,p→V 0
H,q : A0(P̃0u,RT

0 v0) := A (u,RT
0 v0) ∀v0 ∈V 0

H,q,
(5)

and define the projection operators as Pi := RT
i P̃i : Vh,p −→Vh,p, i = 0,1, . . . ,N. The 83

multiplicative Schwarz operator and its symmetrized variant are then defined as 84

Pmu := I− (I−PN)(I−PN−1) · · · (I−P0), (6)

PS
mu := I− (I−P0)

T · · · (I−PN)
T (I−PN) · · · (I−P0), (7)

respectively (cf. [10]). The Schwarz method consists in solving either Pmuu = gmu 85

or PS
muu = gS

mu, for suitable right hand sides gmu and gS
mu, respectively. It can be 86

shown that the operator defined in (7) is symmetric and positive definite; we therefore 87

consider the conjugate gradient (CG) algorithm for the solution of PS
muu = gS

mu. An 88

estimate of the condition number of PS
mu is 89

κ(PS
mu) :=

λmax(PS
mu)

λmin(PS
mu)

,

where λmax(PS
mu) and λmin(PS

mu) are the extremal eigenvalues of the operator PS
mu. 90

On the other hand, the multiplicative operator Pmu is non-symmetric; we therefore 91

consider a Richardson iteration applied to Pmuu = gmu, and show that the norm of 92

the error propagation operator Emu := (I−PN)(I−PN−1) · · · (I−P0) is strictly less 93

than one, i.e., 94

‖Emu‖2
A := sup

v∈Vh,p
v�=0

A (Emuv,Emuv)
A (v,v)

< 1,

and therefore a Richardson iteration applied to the preconditioned system converges. 95

The following result provides a bound for the norm of the error propagation op- 96

erator of the multiplicative Schwarz operator, and for the condition number of the 97

symmetrized Schwarz operator (we refer to [3] for the proof). 98

Theorem 1 ([3]). There exists constants C1,C2 ≥ 1, independent of the mesh-size 99

and the polynomial degree, such that 100

‖Emu‖2
A ≤ 1− h

C1α p2H
, κ(PS

mu)≤C2α p2 H
h
.

Theorem 1 also guarantees that the multiplicative Schwarz method can be accel- 101

erated with the GMRES iterative solver. Indeed, according to [8], the GMRES 102

method applied to the preconditioned system Pmuu = gmu does not stagnate (i.e., 103

the iterative method makes some progress in reducing the residual at each itera- 104

tion step) provided that: (i) ‖Pmu‖A is bounded; (ii) the symmetric part of Pmu is 105

positive definite, i.e., there exists cp > 0 such that A (v,Pmuv) > cpA (v,v) for all 106

v ∈ Vh,p. Condition (i) follows directly from the definition of Pmu and Theorem 1: 107

‖Pmu‖A = ‖I−Emu‖A ≤ 1+ ‖Emu‖A < 2. To prove condition (ii), it can be shown 108

that 109



Page 243

UN
CO

RR
EC

TE
D

PR
O
O
F

Preconditioning High–Order DG discretizations of Elliptic Problems

(a) (b)

Fig. 1. Initial Cartesian and triangular coarse and fine grids on a 16 subdomain partition.
(a) Initial coarse grids (mesh-size H0) and (b) initial fine grids (mesh-size h0)

A (Pmuv,v) = A (v,v)−A (Emuv,v)≥ (1−‖Emu‖A ) A (v,v).

Therefore, condition (ii) holds true with cp = 1−‖Emu‖A which is positive due to 110

Theorem 1. 111

4 Numerical Results 112

In this section we present some numerical experiments to highlight the practical per- 113

formance of the multiplicative and symmetrized non-overlapping Schwarz precon- 114

ditioners. From the algebraic point of view, the Schwarz operators (6) and (7) can 115

be written as the product of a suitable preconditioner, namely Bmu, BS
mu, respec- 116

tively, and A. Indeed, the local components can be constructed as Ai = RiART
i , see 117

(3) for i = 1 . . . ,N, and (4) for i = 0. From the definition (5) of the local projection 118

P̃i = A−1
i RiA, and therefore Pi = RT

i P̃i = RT
i A−1

i RiA. In practice, only the action 119

of the preconditioner on a vector is needed. Algorithm 2 shows how to compute 120

the action of Bmu on a vector x ∈ R
N p

h . Throughout this section we have set the

Algorithm 2 z = Bmux

z = RT
0 A−1

0 R0x
for i = 1→ N do

z = z+RT
i A−1

i Ri(x−Az)
end for

121

penalty parameter α := 10 (see (2)). We consider a subdomain partition consisting 122

of N = 16 squares, and consider the initial Cartesian and unstructured triangular par- 123

titions shown in Fig. 1, and denote by H0 and h0 the corresponding initial coarse and 124

fine mesh-sizes, respectively. We consider n successive global uniform refinements 125

of these initial grids so that the resulting mesh-sizes are Hn = H0/2n and hn = h0/2n, 126

with n = 0,1,2,3, respectively. The (relative) tolerance is set equal to 10−9 (respec- 127

tively, 10−6) for the CG (respectively, GMRES) iterative solver. We first address 128

the performance of the multiplicative Schwarz preconditioner by keeping the mesh 129

fixed, and varying the polynomial approximation degree p. In Table 1 we compare 130

the GMRES iteration counts for both the preconditioned and non-preconditioned (in 131
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Table 1. GMRES iteration counts. Multiplicative Schwarz preconditioner with a piecewise
constant coarse solver (q = 0). Unstructured triangular grids.

h = h0/2 h = h0/4 h = h0/4

H = H0 H = H0 H = H0/2

p = 1 23 (94) 33 (199) 25 (199)
p = 2 45 (259) 64 (540) 49 (540)
p = 3 66 (470) 93 (996) 74 (996)
p = 4 85 (713) 124 (1546) 97 (1546)
p = 5 105 (1004) 153 (2187) 123 (2187)
p = 6 124 (1342) 183 (2924) 144 (2924)
p = 7 143 (1727) 209 (3742) 167 (3742)
p = 8 162 (2148) 235 (4673) 189 (4673)

p− rate 0.93 (1.63) 0.88 (1.66) 0.93 (1.66)

parenthesis) systems, for different polynomial approximation degrees and different 132

mesh configurations. These results have been obtained on unstructured triangular 133

grids (cf. Fig. 1). Comparing the iteration counts of the preconditioned systems with 134

the unpreconditioned ones for a fixed p, it is clear that the proposed preconditioner is 135

very efficient. Indeed, we observe a reduction in the number of iterations needed to 136

achieve convergence of around one order of magnitude when the proposed precon- 137

ditioner is employed. The last row of Table 1 shows the computed growth rate in the 138

number of iterations: we observe that the number of iterations needed to obtain con- 139

vergence increases linearly as a function of p for the preconditioned system of equa- 140

tions, whereas this quantity grows almost quadratically for the non-preconditioned 141

problem. In Fig. 2 we report the condition number estimates of the symmetrized 142

Schwarz operator and the corresponding iteration counts versus the polynomial de- 143

gree p. The solid lines refer to the mesh configuration h = h0/2, H = H0, whereas 144

the dashed lines refer to the mesh configuration h = h0/4, H = H0/2. This set of nu- 145

merical experiments has been obtained on Cartesian meshes, employing a piecewise 146

linear coarse solver. As predicted by the theoretical estimates, the condition num- 147

ber of the preconditioned system grows quadratically as a function of p. Moreover, 148

we clearly observe that, for fixed p, by refining both the fine and the coarse grid, 149

but keeping the ratio of the fine and coarse mesh-sizes constant, the condition num- 150

ber (and therefore the number of iterations needed to obtain convergence) remains 151

constant. 152

Next, we consider the performance of the symmetrized Schwarz preconditioner 153

when varying the coarse and fine mesh-size, and keeping the polynomial approxima- 154

tion degree p fixed. In Table 2 (left) we report the condition number estimates for the 155

symmetrized Schwarz operator employing piecewise biquadratic elements (p = 2) 156

and a piecewise constant coarse solver (q = 0); whereas, in Table 2 (right) the analo- 157

gous results obtained with piecewise bicubic elements (p = 3) and a piecewise linear 158

coarse solver (q= 1) are shown. We clearly observe that the condition number grows 159
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Fig. 2. Condition number estimates of the symmetrized Schwarz operator and corresponding
iteration counts versus the polynomial degree p on Cartesian grids for different discretization
steps (solid line: h = h0/2, H =H0; dashed line h = h0/4, H =H0/2). Piecewise linear coarse
solver
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Table 2. Condition number estimates for the symmetrized Schwarz operator with p= 2, q = 0
(left) and p = 3, q = 1 (right). Cartesian grids.

t2.1h ↓ H→ H0 H0/2 H0/4 H0/8 H0 H0/2 H0/4 H0/8

t2.2h0 5.32e2 1.12e3 4.01e3 7.08e3 4.81e1 9.5925e1 1.92e2 3.91e2
t2.3h0/2 2.74e2 4.71e2 2.80e3 5.59e3 2.14e1 4.35e1 8.70e1 1.75e2
t2.4h0/4 – 2.60e2 1.18e3 3.42e3 – 2.09e1 4.24e1 8.44e1
t2.5h0/8 – – 3.45e2 1.75e3 – – 2.05e1 4.26e1

t2.6κ(A) 2.88e5 1.18e6 4.89e6 1.99e7 7.44e5 2.81e6 1.11e7 4.55e7

as O(Hh−1), as predicted by Theorem 1. Moreover, we clearly observe that employ- 160

ing a piecewise linear coarse solver (q = 1) rather than a piecewise constant coarse 161

solver (q = 0) significantly improves the performance of the preconditioner. Indeed, 162

comparing the condition number estimates of the preconditioned system with the 163

analogous ones obtained for the non-preconditioned problem (last row of Table 2) 164

we clearly observe that the condition number of the non-preconditioned system is 165

reduced with respect to the condition number of the preconditioned system by ap- 166

proximately 5 orders of magnitude for q = 1 and 4 orders of magnitude for q = 0. 167
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