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Summary. In this paper we describe the application of finite element tearing and intercon- 6

necting methods for the simulation of biological tissues, as a particular application we con- 7

sider the myocardium. As most other tissues, this material is characterized by anisotropic and 8

nonlinear behavior. 9

1 Modeling Biological Tissues 10

In this paper we consider the numerical simulation of biological tissues, that can be 11

described by the stationary equilibrium equations 12

divσ(u,x)+ f (x) = 0 for x ∈Ω ⊂ R
3, (1)

to find a displacement field u where we have to incorporate boundary conditions to 13

describe the displacements or the boundary stresses on Γ = ∂Ω . 14

In the case of biological tissues the material is assumed to be hyperelastic, i.e. we 15

have to incorporate large deformations and a non-linear stress-strain relation. For the 16

derivation of the constitutive equation we introduce the strain energy function Ψ(C) 17

which represents the elastic stored energy per unit reference volume. From this we 18

obtain the constitutive equation as in [1] 19

σ = J−1F
∂Ψ (C)

∂C
F�, 20

where J = detF is the Jacobian of the deformation gradient F= ∇ϕ , and C= F�F is 21

the right Cauchy-Green tensor. In what follows we make use of the Rivlin-Ericksen 22

representation theorem to find a representation of the strain energy function Ψ in 23

terms of the principal invariants of C= F�F. 24

The cardiac muscle, the so-called myocardium, is the most significant layer for 25

the modeling of the elastic behavior of the heart wall. Muscle fibers are arranged in 26

parallel, in different sheets within the tissue. Although this fiber type is predominant, 27

we have also collagen that is arranged in a spatial network connecting the muscle 28
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fibers. We denote by f0 the fiber axis which is referred to as the main direction of 29

the cardiac muscle fibers. The sheet axis s0 is defined to be perpendicular to f0 in 30

the plane of the layer. This direction coincides with the collagen fiber orientation. As 31

many other biological tissues we treat the myocardium as a nearly incompressible 32

material. It shows a highly nonlinear and, due to the muscle and collagen fibers, an 33

anisotropic behavior. 34

To capture the specifics of this fiber-reinforced composite, Holzapfel and Og- 35

den proposed a strain-energy function Ψ that is decomposed into a volumetric, an 36

isotropic and an anisotropic part, which consists of a transversely isotropic and an 37

orthotropic response, see [7, 11], 38

Ψ(C) =Ψvol(J)+Ψiso(C)+Ψtrans(C, f0)+Ψtrans(C,s0)+Ψortho(C, f0,s0). (2)

Following [11], we describe the volume changing part by 39

Ψvol(J) =
κ
2
(logJ)2. (3)

The bulk modulus κ > 0 serves as a penalty parameter to enforce the (almost) incom- 40

pressibility constraint. To model the isotropic ground substance we use a classical 41

exponential model, see [2], 42

Ψiso(C) =
a

2b

{
exp[b(J−2/3I1−3)]−1

}
, (4)

where a > 0 is a stress-like and b is a dimensionless material parameter. I1 = tr(C) 43

is the first principal invariant of the right Cauchy-Green tensor C. In (2), Ψtrans is 44

associated with the deformations in direction of the fiber directions. Following [7] 45

we describe the transversely isotropic response by using 46

Ψtrans(C, f0) =
a f

2b f

{
exp[b f (J

−2/3I4 f −1)2]−1
}

Ψtrans(C,s0) =
as

2bs

{
exp[bs(J

−2/3I4s−1)2]−1
}
,

(5)

with the invariants I4 f := f0 · (Cf0) and I4s := s0 · (Cs0) and the material parameters 47

a f , b f , as and a f which are all assumed to be positive. It is worth to mention, that 48

in this model the transversely isotropic responses Ψtrans only contribute in the cases 49

I4 f > 1, I4s > 1, respectively. This corresponds to a stretch in a fiber direction, and 50

this is explained by the wavy structure of the muscle and collagen fibers. In par- 51

ticular, the fibers are not able to support compressive stress. Moreover, the fibers 52

are not active at low pressure, and the material behaves isotropically in this case. 53

In contrast, at high pressure the collagen and muscle fibers straighten and then they 54

govern the resistance to stretch of the material. This behavior of biological tissues 55

was observed in experiments and this is fully covered by the myocardium model as 56

described above. The stiffening effect at higher pressure also motivates the use of the 57

exponential function in the anisotropic responses of the strain energy Ψ . 58

Finally a distinctive shear behavior motivates the inclusion of an orthotropic part 59

in the strain energy function in terms of the invariant I8 f s = f0 · (Cs0) 60
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Ψortho(C) =
a f s

2b f s

{
exp(b f sJ

−2/3I2
8 f s)−1

}
, (6)

Here a f s > 0 is a stress-like and b f s > 0 a dimensionless material constant. 61

Note that the material parameters can be fitted to an experimentally observed 62

response of the biological tissue. In the case of the myocardium, experimental data 63

and, consequently, parameter sets are very rare. Following [7] and [11], we use the 64

slightly adapted material parameters to be found in Table 1. 65

t1.κ = 3333.33 kPa, a = 33.445 kPa, b = 9.242 (-),
t1.a f = 18.535 kPa, bs = 10.446 (-), b f = 15.972 (-),
t1.a f s = 0.417 kPa, as = 2.564 kPa, b f s = 11.602 (-).

Table 1. Material parameters used in the numerical experiments [7, 11].

Note that similar models can also be used for the description of other biological 66

materials, e.g., arteries, cf. [6, 8]. 67

2 Finite Element Approximation 68

In this section we consider the variational formulation of the equilibrium equations 69

(1) with Dirichlet boundary conditions u = gD on ΓD, Neumann boundary conditions 70

t := σ(u)n = gN on ΓN , Γ = Γ D ∪Γ N , ΓD ∩ΓN = /0, and n is the exterior normal 71

vector of Γ = ∂Ω . In particular we have to find u ∈ [H1(Ω)]3, u = gD on ΓD, such 72

that 73

a(u,v) :=
∫

Ω
σ(u) : e(v)dx =

∫
Ω

f · vdx+
∫

ΓN

gN · vdsx =: F(v) (7)

is satisfied for all v ∈ [H1(Ω)]3, v = 0 on ΓD. 74

By introducing an admissible decomposition of the computational domain Ω into 75

tetrahedra and by using piecewise quadratic basis functions ϕ�, the Galerkin finite el- 76

ement discretization of the variational formulation (7) results in a nonlinear system 77

of algebraic equations, to find uh satisfying an approximate Dirichlet boundary con- 78

dition uh = QhgD on ΓD, and 79

K�(uh) =

∫
Ω

σ(uh) : e(ϕ�)dx =
∫

Ω
f ·ϕ�dx+

∫
ΓN

gN ·ϕ�dsx = F�. (8)

For the solution of the nonlinear system (8), i.e. of G(uh) :=K(uh)−F = 0, we apply 80

Newton’s method to obtain the recursion 81

uk+1
h = uk

h +Δuk
h, G′h(u

k
h)Δuk

h =−G(uk
h),

or, by using the definition of G(·), 82

uk+1
h = uk

h +Δuk
h, K′h(u

k
h)Δuk

h =−K(uk
h). (9)
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For the computation of the linearized stiffness matrix K′h(u
k
h) we need to evaluate the 83

derivative of the nonlinear material model as described in the previous section. For a 84

detailed presentation how to compute K′h(u
k
h) in this particular case, see [5]. 85

3 Finite Element Tearing and Interconnecting 86

For the parallel solution of (9) we will use a finite element tearing and interconnect- 87

ing approach [4], see also [8, 14] and references given therein. For a bounded domain 88

Ω ⊂ R
3 we introduce a non-overlapping domain decomposition 89

Ω =
p⋃

i=1

Ω i with Ωi∩Ω j = /0 for i �= j, Γi = ∂Ωi. (10)

The local interfaces are given by Γi j :=Γi∩Γj for all i< j. The skeleton of the domain 90

decomposition (10) is denoted as 91

ΓC :=
p⋃

i=1

Γi = Γ ∪
⋃
i< j

Γ i j.

Instead of the global problem (1) we now consider local subproblems to find the local 92

restrictions ui = u|Ωi
satisfying partial differential equations 93

div(σ(ui))+ f (x) = 0 for x ∈Ωi, 94

the Dirichlet and Neumann boundary conditions ui = gD on Γi∩ΓD, σ(ui)ni = gN on 95

Γi∩ΓN , and the transmission conditions ui = u j, ti+t j = 0 on Γi j, where ti =σ(ui)ni is 96

the local boundary stress, and ni is the exterior normal vector of the local subdomain 97

boundary Γi = ∂Ωi. Note that the local stress tensors σ(ui) are defined locally by 98

using the stress-strain function Ψ as introduced in Sect. 1, and by using localized 99

parameters κ ,k1,k2,c and fiber directions β1, β2. Hence, by reordering the degrees 100

of freedom, the linearized system (9) can be written as 101

⎛
⎜⎜⎜⎜⎜⎝

K′11(u
k
1,h) K′1C(u

k
1,h)A1

· ·
K′pp(u

k
p,h) K′pC(u

k
p,h)Ap

A�1 K′C1(u
k
1,h) · A�p K′Cp(u

k
p,h)

p
∑

i=1
A�i K′CC(u

k
i,h)Ai

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Δuk
1,I

·
Δuk

p,I

Δuk
C

⎞
⎟⎟⎟⎠=−

⎛
⎜⎜⎜⎜⎜⎝

K1(uk
1,h)

·
Kp(uk

p,h)
p
∑

i=1
A�i KC(uk

i,h)

⎞
⎟⎟⎟⎟⎟⎠
, 102

where the increments Δuk
i,I correspond to the local degrees of freedom within the 103

subdomain Ωi, and Δuk
C is related to all global degrees of freedom on the coupling 104

boundary ΓC. By introducing the tearing 105

wi =

(
Δuk

i,I

AiΔuk
C

)
, K′i =

(
K′ii(uk

i,h) K′iC(u
k
i,h)

K′Ci(u
k
i,h) K

′
CC(u

k
i,h)

)
, fi =−

(
Ki(uk

i,h)

KC(uk
i,h)

)
, 106
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by applying the interconnecting
p
∑

i=1
Biwi = 0, and by using discrete Lagrange multi- 107

pliers, we finally have to solve the system 108

⎛
⎜⎜⎜⎝

K′1 B�1
. . .

...
K′p B�p

B1 . . . Bp

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1
...

wp

λ

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

f1
...

fp

0

⎞
⎟⎟⎟⎠ . (11)

For the solution of the linear system (11) we follow the standard approach of tearing 109

and interconnecting methods. In the case of a floating subdomain Ωi, i.e. Γi ∩ΓD = 110

/0, the local matrices K′i are not invertible. Hence we introduce the Moore-Penrose 111

pseudo inverse K†
i to represent the local solutions as 112

wi = K†
i (fi−B�i λ )+

6

∑
k=1

γk,ivk,i, (12)

where vk,i ∈ ker K′i correspond to the rigid body motions of elasticity. Note that in 113

this case we also require the solvability conditions 114

(fi−B�i λ ,vk,i) = 0 for i = 1, . . . ,6. 115

In the case of a non-floating subdomain, i.e. ker Ki = /0, we may set K†
i = K−1

i . As 116

in [10] we may also consider an all-floating approach where also Dirichlet boundary 117

conditions are incorporated by using discrete Lagrange multipliers. 118

In general, we consider the Schur complement system of (11) to obtain 119

p

∑
i=1

BiK
†
i B
�
i λ −

p

∑
i=1

6

∑
k=1

γk,iBivk,i =
p

∑
i=1

BiK
†
i fi, (fi−B�i λ ,vk,i) = 0, 120

which can be written as 121(
F −G
G�

)(
λ
γ

)
=

(
d

e

)
(13)

with 122

F=
p

∑
i=1

BiK
†
i B
�
i , G=

p

∑
i=1

6

∑
k=1

Bivk,i, d =
p

∑
i=1

BiK
†
i fi, ek,i = (fi,vk,i). 123

For the solution of the linear system (13) we use the projectionP� := I−G(G�G)−1G�124

and it remains to consider the projected system 125

P�Fλ = P�d (14)

which can be solved by using a parallel GMRES method with suitable precondition- 126

ing. Note that the initial approximate solution λ 0 satisfies the compatibility condi- 127

tion G�λ 0 = e. In a post processing we finally recover γ = (G�G)−1G� (Fλ −d), 128

and subsequently the desired solution (12). 129



Page 532

UN
CO

RR
EC

TE
D

PR
O
O
F

Christoph Augustin and Olaf Steinbach

Following [3] we are going to apply either the lumped preconditioner 130

PM−1 :=
p

∑
i=1

BiK
′
iB
�
i , (15)

or the Dirichlet preconditioner 131

PM−1 :=
p

∑
i=1

Bi

(
0 0

0 Si

)
B�i , (16)

where 132

Si = K′CC(u
k
i,h)−K′Ci(u

k
i,h)K

′−1
ii (uk

i,h)K
′
iC(u

k
i,h) 133

is the Schur complement of the local finite element matrix K′i. Alternatively, one 134

may also used scaled hypersingular boundary integral operator preconditioner as 135

proposed in [9]. 136

4 Numerical Results 137

In this section we present some examples to show the applicability of the FETI ap- 138

proach for the simulation of the myocardium. We consider a mesh of the left and the 139

right ventricle of a rabbit heart with given fiber and sheet directions, see Fig. 1, which 140

is decomposed in 480 subdomains, see Fig. 2. To describe the anisotropic and nonlin- 141

ear cardiac tissue, we use the material model (2) with the parameters given in Table 1. 142

Dirichlet boundary conditions are imposed on the top of the myocardium mesh. The 143

interior wall of the right ventricle is exposed to the pressure of 1 mmHg which is 144

modeled with Neumann boundary conditions. Although this pressure is rather low, 145

the material model as used is orthotropic. To simulate a higher pressure, an appropri- 146

ate time stepping scheme has to be used. However, this does not affect the number of 147

local iterations significantly. The local Moore Penrose pseudo inverse matrices are 148

realized with a sparsity preserving regularization and the direct solver package Par- 149

diso [12, 13]. The global nonlinear finite element system with 12.188.296 degrees 150

of freedom is solved by a Newton scheme, where the FETI approach is used in each 151

Newton step. For this specific example the Newton scheme needed six iterations. 152

Due to the non-uniformity of the subdomains the efficiency of a global precondi- 153

tioner becomes more important. We consider both the classical FETI approach, as 154

well as the all–floating formulation. Besides no preconditioning we use the simple 155

lumped preconditioner (15) and the Dirichlet preconditioner (16). It turns out that the 156

number of iterations for the all–floating formulation is approximately half the num- 157

ber of iterations for the standard approach. Moreover, the Dirichlet preconditioner 158

within the all–floating formulation requires only 108 iterations, with a computing 159

time of approximately 5 min. All computations were done at the Vienna Scientific 160

Cluster (VSC2) (Fig. 3).AQ1 161
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Fig. 1. Left and right ventricle of the rabbit heart. Mesh
consists of 3.073.529 tetrahedrons and 547.680 vertices.
Black lines indicate fiber directions f0. Point of view is
from above showing the interior of the left and right ven-
tricle
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preconditioner iterations

classical FETI

none 941
lumped, (15) 916
Dirichlet, (16) 215

all-floating FETI

none 535
lumped, (15) 401
Dirichlet, (16) 108

Fig. 2. The picture shows the displacement field of the rabbit heart with pressure applied in
the right ventriculum. Point of view is from below showing the apex of the heart at the bottom.
In the table the iteration numbers of the global GMRES method for different preconditioners
are given
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Fig. 3. Von Mises stress in the right
ventricle. Point of view is from above
looking inside the right ventricle
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