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Summary. In this paper, we present a multigrid preconditioner for solving the linear system 11

arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second 12

order elliptic problems with jump coefficients. The preconditioner uses the standard conform- 13

ing subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump 14

in the coefficient and near-optimality with respect to the number of degrees of freedom. 15

1 Introduction 16

The purpose of this paper is to present a multigrid preconditioner for solving the lin- 17

ear system arising from the P1 nonconforming Crouzeix-Raviart (CR) discretization 18

of second order elliptic problems with jump coefficients. The multigrid precondi- 19

tioner we consider here uses pointwise relaxation (point Gauss-Seidel/Jacobi itera- 20

tive methods) as a smoother, followed by a subspace (coarse grid) correction which 21

uses the standard multilevel structure for the nested P1 conforming finite element 22

spaces. The subspace correction step is motivated by the observation that the stan- 23

dard P
1 conforming space is a subspace of the CR finite element space. 24

The idea of using conforming subspaces to construct preconditioners for CR dis- 25

cretization has been used in [6, 9, 11] in the context of smooth coefficients. To deal 26

with the jump coefficient problems, multilevel methods using conforming subspaces 27

were proposed and analyzed in [7, 8]. In particular, the author showed that if the 28

coefficients satisfy the quasi-monotone condition (cf. [5]), then the preconditioned 29

systems have condition numbers independent of the coefficients and depending on 30

the mesh size logarithmically. The author also showed that the same conclusions 31

hold for multilevel preconditioners with an additional exotic coarse space in case of 32

general coefficient distributions with cross points. 33

To avoid the implementation of the additional exotic coarse space, we take 34

another approach in this paper and show that the multigrid method (without the 35
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additional exotic coarse space) is a robust preconditioner for PCG algorithm. In par- 36

ticular, we show that the preconditioned system has only a few “bad eigenvalues” 37

(depending on the jumps of the coefficients), and the asymptotic convergence rate 38

of the PCG algorithm will be uniform with respect to the coefficient. The analysis 39

follows closely [12] with the help of special technical tools developed in [2]. Due 40

to space limitation we only state the main result (Theorem 1 in Sect. 3), and provide 41

numerical results that support it. Detailed analyses and further discussion of the al- 42

gorithm are presented in [13]. One of the main benefits of this algorithm is that it is 43

very easy to implement in practice. The procedure is the same as the standard multi- 44

grid algorithm on conforming spaces, and the only difference is the prolongation and 45

restriction matrices on the finest level. Since the spaces are nested, the prolongation 46

matrix is simply the matrix representation of the natural inclusion operator from the 47

conforming space to the CR space. 48

The paper is organized as follows. In Sect. 2, we give basic notation and the finite 49

element discretizations. In Sect. 3, we present the multigrid algorithm and discuss its 50

implementation and convergence. Finally, in Sect. 4 we verify numerically the the- 51

oretical results by presenting several numerical tests for two and three dimensional 52

model problems. 53

2 Preliminaries 54

Let Ω ⊂R
d (d = 2,3) be an open polygonal domain. Given f ∈ L2(Ω), we consider 55

the following model problem: Find u ∈ H1
0 (Ω) such that 56

a(u,v) := (κ∇u,∇v) = ( f ,v) ∀v ∈ H1
0 (Ω) , (1)

where the diffusion coefficient κ ∈ L∞(Ω) is assumed to be piecewise constant, 57

namely, κ(x)|Ωm = κm is a constant for each (open) polygonal subdomain Ωm satis- 58

fying ∪M
m=1Ω m = Ω and Ωm∩Ωn = /0 for m �= n. 59

We assume that there is an initial (quasi-uniform) triangulation T0, with mesh 60

size h0, such that for all T ∈T0 κT := κ(x)|T is constant. Let T j :=Th j ( j = 1, · · · ,J) 61

be a family of uniform refinement of T0 with mesh size h j. Without loss of generality, 62

we assume that the mesh size h j � 2− jh0 ( j = 0, · · · ,J) and denote h = hJ . 63

On each level j = 0, · · · ,J, we define Vj as the standard P
1 conforming finite ele- 64

ment space defined on T j. Then the standard conforming finite element discretization 65

of (1) reads: 66

Find u j ∈Vj such that a(u j,v j) = ( f ,v j), ∀v j ∈Vj. (2)

For each j = 0, · · · ,J, we define the induced operator for (2) as 67

(A jv j,wj) = a(v j,wj), ∀v j,wj ∈Vj. 68

We denote Eh the set of all edges (in 2D) or faces (in 3D) of Th. Let VCR
h be the 69

piecewise linear nonconforming Crouzeix-Raviart finite element space defined by: 70
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VCR
h =

{
v ∈ L2(Ω) : v|T ∈ P

1(T )∀T ∈ Th and
∫

e
[[v]]eds = 0 ∀e ∈ Eh

}
,

where P1(T ) denotes the space of linear polynomials on T and [[v]]e denotes the jump 71

across the edge/face e ∈ Eh with [[v]]e = v when e⊂ ∂Ω . In the sequel, let us denote 72

VJ+1 :=VCR
h for simplicity. We remark that all these finite element spaces are nested, 73

that is, 74

V0 ⊂ ·· · ⊂VJ ⊂VJ+1. 75

The P1-nonconforming finite element approximation to (1) reads: 76

Find u ∈VCR
h : ah(u,w) := ∑

T∈TJ

∫
T

κT ∇u ·∇w = ( f ,w),∀w ∈VCR
h . (3)

The bilinear form ah(·, ·) induced a natural energy norm: |v|h,κ :=
√

ah(v,v) for any 77

v ∈VCR
h . In operator form, we are going to solve the linear system 78

Au = f , (4)

where A is the operator induced by (3), namely 79

(Av,w) = ah(v,w), ∀v,w ∈VCR
h . 80

3 A Multigrid Preconditioner 81

The action of the standard multigrid V -cycle preconditioner B := BJ+1 : VJ+1 	→VJ+1 82

on a given g ∈VJ+1 is recursively defined by the following algorithm (cf. [3]):

V -cycle
Let gJ+1 = g, and B0 = A−1

0 . For j = 1, · · · ,J + 1, we define recursively B jg j for
any g j ∈Vj by the following three steps:

1. Pre-smoothing : w1 = R jg j;
2. Subspace correction: w2 = w1 +B j−1Q j−1(g j−A jw1);
3. Post-smoothing: B jg j := w2 +R∗j(g j−A jw2).

83

In this algorithm, R j corresponds to a Gauss-Seidel or a Jacobi iterative method 84

known as a smoother; and Q j is the standard L2 projection on Vj: 85

(Q jv,wj) = (v,wj), ∀wj ∈Vj, ( j = 0, · · · ,J). 86

The implementation of Algorithm 3 is almost identical to the implementation of 87

the standard multigrid V -cycle (cf. [4]). Between the conforming spaces, we use the 88

standard prolongation and restriction matrices (for conforming finite elements). The 89
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corresponding matrices between VJ and VJ+1, are however different. The prolonga- 90

tion matrix on VJ can be viewed as the matrix representation of the natural inclusion 91

IJ : VJ →VJ+1, which is defined by 92

(IJv)(x) = ∑
e∈Eh

v(me)ψe(x), 93

where ψe is the CR basis on the edge/face e ∈ Eh and me is the barycenter of e. 94

Therefore, the prolongation matrix has the same sparsity pattern as the edge-to-vertex 95

(in 2D), or face-to-vertex (in 3D) connectivity, and each nonzero entry in this matrix 96

equals the constant 1/d where d is the space dimension. The restriction matrix is 97

simply the transpose of the prolongation matrix. 98

The efficiency and robustness of this preconditioner can be analyzed in terms of 99

the effective condition number (cf. [12]) defined as follows: 100

Definition 1. Let V be a real N dimensional Hilbert space, and S : V → V be a 101

symmetric positive definition operator with eigenvalues 0 < λ1 ≤ ·· · ≤ λN . The m-th 102

effective condition number of S is defined by 103

Km(S) := λN(S)/λm+1(S). 104

Note that the standard condition number K (BA) of the preconditioned system BA 105

will be large due to the large jump in the coefficient κ . However, there might be only 106

a small (fixed) number of small eigenvalues of BA, which cause the large condition 107

number; and the other eigenvalues are bounded nearly uniformly. In particular, we 108

have the following main result: 109

Theorem 1. Let B be the multigrid V-cycle preconditioner defined in Algorithm 3. 110

Then there exists a fixed integer m0 < M, depending only on the distribution of the 111

coefficient κ , such that 112

Km0(BA)≤C2| logh|2 =C2J2 ,

where the constant C > 0 is independent of the coefficients and mesh size. 113

The analysis is based on the subspace correction framework [10], but some technical 114

tools developed in [2] are needed to deal with nonconformity of the finite element 115

spaces. Due to space restriction, a detailed analysis will be reported somewhere else. 116

Thanks to Theorem 1 and a standard PCG convergence result (cf. [1, Sect. 13.2]), 117

the PCG algorithm with the multigrid V -cycle preconditioner defined in Algorithm 3 118

has the following convergence estimate: 119

|u−ui|h,κ ≤ 2(K (BA)−1)m0

(
CJ−1
CJ+ 1

)i−m0

|u−u0|h,κ , 120

where u0 is the initial guess, and ui is the solution of i-th PCG iteration. Although the 121

condition number K (BA) might be large, the convergence rate of the PCG algorithm 122

is asymptotically dominated by CJ−1
CJ+1 , which is determined by the effective condition 123

number Km0(BA). Moreover, this bound of asymptotic convergence rate convergence 124

is independent of the coefficient κ , but depends on the mesh size logarithmically. 125
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4 Numerical Results 126

In this section, we present several numerical tests in 2D and 3D which verify the 127

result in Theorem 1 on the performance of the multigrid V -cycle preconditioner de- 128

scribed in the previous sections. The numerical tests show that the effective condi- 129

tion numbers of the preconditioned linear systems (with V -cycle preconditioner) are 130

nearly uniformly bounded. 131

4.1 A 2D Example 132

As a first model problem, we consider Eq. (1) in the square Ω = (−1,1)2 with coef- 133

ficient such that, κ(x) = 1 for x ∈Ω1 = (−0.5,0)2∪ (0,0.5)2, and κ(x) = ε for x in 134

the remaining subdomain, x ∈ Ω \Ω1 (see Fig. 1). By decreasing the value of ε we 135

increase the contrast in the PDE coefficients. 136

Our initial triangulation on level 0 has mesh size h0 = 2−1 and resolves the inter- 137

faces where the coefficients have discontinuities. Then on each level, we uniformly 138

refine the mesh by subdividing each element into four congruent children. In this 139

example, we use 1 forward/backward Gauss-Seidel iteration as pre/post smoother 140

in the multigrid preconditioner, and the stopping criteria of the PCG algorithm is 141

‖rk‖/‖r0‖< 10−7 where rk is the residual at k-th iteration. 142
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Fig. 1. 2D computational domain
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Fig. 2. Eigenvalue distribution of BA
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Figure 2 shows the eigenvalue distribution of the multigrid V -cycle precondi- 143

tioned system BA when h = 2−5 (level = 4) and ε = 10−5. As we can see from this 144

figure, there is only one small eigenvalue that deteriorates with respect to the jump 145

in the coefficient and the mesh size. 146

Table 4.1 shows the estimated condition number K and the effective condition 147

number K1 of BA. It can be observed that the condition number K increases rapidly 148

with respect to the increase of the jump in the coefficients and the number of de- 149

grees of freedom. On the other hand, the number of PCG iterations increases only a 150
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small amount, and the corresponding effective condition number is nearly uniformly 151

bounded, as predicted by Theorem 1.

t1.1ε levels 0 1 2 3 4

t1.2
1

K 1.65 (8) 1.83 (10) 1.9 (10) 1.9 (10) 1.89 (10)
t1.3K1 1.44 1.78 1.77 1.78 1.76
t1.4

10−1 K 3.78 (10) 3.69 (11) 3.76 (12) 3.79 (12) 3.88 (12)
t1.5K1 1.89 1.87 1.93 1.92 1.95
t1.6

10−2 K 23.4 (12) 23.6 (13) 24.6 (13) 25.1 (14) 26 (15)
t1.7K1 2.15 1.96 1.99 1.97 2.24
t1.8

10−3 K 218 (13) 223 (14) 232 (15) 238 (16) 246 (16)
t1.9K1 2.19 1.98 2 1.98 2.29
t1.10

10−4 K 2.17e+3 (14) 2.21e+3 (15) 2.31e+3 (16) 2.37e+3 (18) 2.45e+3 (18)
t1.11K1 2.2 1.98 2 1.98 2.3
t1.12

10−5 K 2.17e+4 (15) 2.21e+4 (16) 2.31e+4 (17) 2.37e+4 (19) 2.76e+4 (19)
t1.13K1 2.2 1.98 2 1.98 2.64

Table 1. Estimated condition number K (number of PCG iterations) and the effective condi-
tion number K1

152

4.2 A 3D Example 153

In this second example, we consider the model problem (1) in the open unit cube in 154

3D with a similar setting for the coefficient. We set κ(x) = 1 for x∈Ω1 =(0.25,0.5)3
155

or x ∈ Ω2 = (0.5,0.75)3, and κ(x) = ε for the remaining subdomain (that is, for 156

x ∈Ω \ (Ω1∪Ω2)). The domain Ω and the subdomains just described are shown in 157

Fig. 3. The coarsest partition has mesh size h0 = 2−2, and it is set in a way so that it 158

resolves the interfaces where the coefficient has jumps. 159

To test the effects of the smoother, in this example we use 5 forward/backward 160

Gauss-Seidel as smoother in the multigrid preconditioner. In order to test more severe 161

jumps in the coefficients, we set the stopping criteria ‖rk‖/‖r0‖< 10−12 for the PCG 162

algorithm in this experiment. 163

Figure 4 shows the eigenvalue distribution of the multigrid V -cycle precondi- 164

tioned system BA when h = 2−5 (level = 3) and ε = 10−5. As before, this figure 165

shows that there is only one small eigenvalue that even deteriorates with respect to 166

the jump in the coefficients and the mesh size. 167

Table 2 shows the estimated condition number K (with the number of PCG 168

iterations), and the effective condition number K1. As is easily seen from the results 169

in this table, the condition number K increases when ε decreases, i.e. the condition 170

number grows when the jump in the coefficients becomes larger. On the other hand, 171

the results in Table 2 show that the effective condition number K1 remains nearly 172

uniformly bounded with respect to the mesh size and it is robust with respect to the 173

jump in the coefficient, thus confirming the result stated in Theorem 1: a PCG with 174
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Fig. 3. 3D computational domain
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Fig. 4. Eigenvalue distribution of BA
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t2.1ε levels 0 1 2 3

t2.2
1

K 1.19 (8) 1.34 (11) 1.37 (11) 1.36 (11)
t2.3K1 1.16 1.26 1.31 1.29
t2.4

10−1 K 2.3 (10) 1.94(13) 1.75 (13) 1.67 (14)
t2.5K1 1.60 1.56 1.45 1.43
t2.6

10−3 K 86.01 (11) 63.07 (16) 52.67 (17) 48.19(17)
t2.7K1 2.4 2.12 1.89 1.78
t2.8

10−5 K 8.39+3 (13) 6.15e+3 (18) 5.13e+3 (19) 4.70e+3(19)
t2.9K1 2.44 2.14 1.91 1.80
t2.1

10−7 K 8.39+5 (14) 6.15e+5 (21) 5.13e+5 (23) 4.70e+5(21)
t2.1K1 2.45 2.14 1.91 1.80

Table 2. Estimated condition number K (number of PCG iterations) and effective condition
number K1.

multigrid V -cycle preconditioner provides a robust, nearly optimal solver for the CR 175

approximation to (3). 176
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