
Page 101

UN
CO

RR
EC

TE
D

PR
O
O
F

1

Mesh Regularization in Bank-Holst Parallel 2

hp-Adaptive Meshing 3

Randolph E. Bank *1 and Hieu Nguyen†2
4

1 Department of Mathematics, University of California, San Diego, La Jolla, California 5

92093-0112, rbank@ucsd.edu. 6
2 Department of Computer Science, University of California, Davis, Davis, California 7

95616, htrnguyen@ucdavis.edu. 8

1 Introduction 9

In this work, we study mesh regularization in Bank-Holst parallel adaptive paradigm 10

when adaptive enrichment in both h (geometry) and p (degree) is used. The paradigm 11

was first introduced by Bank and Holst in [1–3] and later extended to hp-adaptivity 12

in [5]. In detail, the paradigm can be summarized in the following steps. 13

Step 1 – Load Balancing: The problem is solved on a coarse mesh, and avail- 14

able a posteriori error estimates are used to partition the mesh into subregions. The 15

partition is such that each subregion has approximately the same error although sub- 16

regions may vary considerably in terms of number of elements, number of degrees 17

of freedom, and polynomial degree. 18

Step 2 – Adaptive Meshing: Each processor is provided with complete data for 19

the coarse problem and instructed to sequentially solve the entire problem, with the 20

stipulation that its adaptive enrichment (in h or p) should be limited largely to its 21

own subregion. The target number of degrees of freedom for each processor is the 22

same. 23

Step 3 – Mesh Regularization: The local mesh on each processor is regularized 24

such that the mesh for the global problem described in Step 4 is conforming in both 25

h and p. 26

Step 4 – Global Solve: The final global problem consists of the union of the 27

refined partitions provided by each processor. A final solution is computed using 28

domain decomposition. 29

This paradigm is attractive as it requires low communication and allows exist- 30

ing sequential adaptive finite element codes to run in parallel environment without 31

∗ The work of this author was supported by the U.S. National Science Foundation under con-
tract DMS-0915220. The Beowulf cluster used for the numerical experiments was funded
by NSF SCREMS-0619173.

† The work of this author was supported by the National Science Foundation under contract
DMS-0915220 and a grant from the Vietnam Education Foundation (VEF).

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1__10, © Springer-Verlag Berlin Heidelberg 2013

mailto:rbank@ucsd.edu
mailto:htrnguyen@ucdavis.edu


Page 102

UN
CO

RR
EC

TE
D

PR
O
O
F

Randolph E. Bank and Hieu Nguyen

much effort in recoding. However, it also poses some challenges in mesh regular- 32

ization (Step 3). Since the adaptive enrichment on each processor (Step 2) is com- 33

pletely independent of what happens on other processors, the global refined mesh, 34

constructed from the meshes associated with the refined regions on each of the pro- 35

cessors, is initially non-conforming along the interface system.3 Thus, we need to 36

efficiently identify and resolve these nonconformities, and ultimately to establish 37

links between degrees of freedom on the fine mesh interface system on a given pro- 38

cessor and the corresponding degrees of freedom on other processors which share its 39

interface. These tasks are challenging due to the fact that the meshes are unstructured 40

in geometry (in h), have variable degree (variable p), no element refinement tree is 41

available, and nonconformity exists in both h and p. 42

2 Data Structures 43

In our implementation of Bank-Holst paradigm in PLTMG, a relaxed version of 44

longest edge bisection h-refinement and a rather flexible p-refinement strategy are 45

used for hp-refinement, see [7]. 46

2.1 Boundary Edge Data Structure 47

Each boundary edge is represented by a column in the 6×NBF integer array IB- 48

NDRY, where NBF is the number of boundary edges. For the Ith column of IBNDRY, 49

four of the six entries contain information about the endpoint vertices, and indica- 50

tion of whether the edges is curved or straight, and a user-defined label. One entry 51

indicates edge type (various boundary condition types, or internal interface), and the 52

fifth entry, nonzero only for edges defining the interface system used in the parallel 53

computation, encodes information which is used in the regularization process. This 54

entry is described in more detail in Sect. 2.2 (Table 1).AQ1

Table 1. Boundary edge information

IBNDRY(1,I) First vertex number
IBNDRY(2,I) Second vertex number
IBNDRY(3,I) Curved edge
IBNDRY(4,I) Edge type
IBNDRY(5,I) Parallel information
IBNDRY(6,I) User label

55

3 The term “interface” is used to refer to the system of edges that are shared by two subre-
gions, and the term “boundary” is used to refer to the union of the physical boundary of the
domain and the interface.



Page 103

UN
CO

RR
EC

TE
D

PR
O
O
F

Mesh Regularization in Bank-Holst Parallel hp-Adaptive Meshing

2.2 Interface Edge Labeling 56

One approach to solve the nonconformities in the global refined mesh is to build and 57

store refinement trees for all elements. However, such trees lose some of their attrac- 58

tiveness if procedures such as mesh moving and edge flipping destroy some of their 59

properties. In addition, we only need information about the edges on the interface 60

system, which typically is a very small fraction of the total information describing 61

the mesh. Thus, instead of creating refinement trees for all elements, during the regu- 62

larization phase we recover a refinement tree for each interface edge that defines the 63

initial interface system. To insure that subregions remain geometrically conforming 64

on all processors, we forbid mesh moving and edge flipping for all vertices and edges 65

lying on the interface system. 66

Only minimal information needed to recover the edge refinement tree is stored 67

for each interface edge. In particular, for each interface edge E , we need the index of 68

its original edge r(E) in the interface system of the broadcast coarse mesh (after Step 69

1) and its position in the refinement binary tree s(E). Because the original (interface) 70

edges are the same on all processors, we can first match them, and then their descen- 71

dants based on their positions in the refinement tree. These two pieces of information 72

are combined to make a single integer, label(E), the parallel information for edge E 73

stored in the fifth row of the IBNDRY array: 74

label(E) = r(E)+ (s(E)−1)∗ base.

Here base is an integer which is larger than the number of boundary edges NBF in 75

the broadcast coarse mesh. For edge Eorg in the broadcast mesh, r(Eorg) is its number 76

in the IBNDRY system and s(Eorg) = 1. When an edge E is refined into two children 77

E1 and E2, their labels are determined from label(E) and the following identities: 78

r(E1) = r(E2) = r(E)

s(E1) = 2 ∗ s(E)

s(E2) = 2 ∗ s(E)+ 1

For consistency, E1 and E2 are ordered in the counterclockwise traversal defined by 79

vertices of E . 80

2.3 Interface Data Structure 81

When a boundary edge is refined, its entries in IBNDRY are replaced by those of 82

one of its children. Thus IBNDRY contains only refined boundary edges. To recover 83

the refinement trees of the interface edges, first all of the refined edges are sorted 84

in groups according to r(E). The refined edges in each group are then ordered in 85

a counterclockwise traversal of the interface based on their vertices (end points). 86

Edges in each group will be used to recover a refinement tree whose leaves and root 87

represent themselves and their original edge respectively. 88

In order to illustrate the construction of the refinement tree of edges sharing the 89

same ancestor, we consider the group of all refined edges associated with the original 90



Page 104

UN
CO

RR
EC

TE
D

PR
O
O
F

Randolph E. Bank and Hieu Nguyen

edge E as shown in Fig. 1. These edges have the same index r(E) and have been 91

ordered via a counterclockwise traversal. For simplicity, only positions of these edges 92

in the binary tree are shown. First, leaf nodes for the refined edges are created. Since 93

the two nodes with largest keys (nodes 15 and 14 in our example) are siblings, their 94

s(E) values are used to create the node of their parent (node 7). Then the parent 95

node for the two nodes with the next largest keys (nodes 10 and 11 in our example) 96

are created and so on. The process is completed when the root node (with key 1) is 97

created.

1

2

4 5

10 11

3

6 7

14 15

4 10 11 6 14 15

Fig. 1. Refinement tree associated with an original edge

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

98

Following the above procedure, we construct the interface data IPATH outlined 99

in Table 2. Each interface edge, including those associated with internal nodes in 100

refinement trees, is represented by a column with six entries in IPATH array. The 101

first entry contains the index r(E) if the edge is original (root) and zero otherwise. 102

When edges from the two sides of the interface are matched, this entry is updated 103

with the index of the corresponding edge. The second entry stores either the index 104

of the edge’s first child or its number in IBNDRY array (with minus sign) if it has 105

no child. Sibling edges are put consecutively in IPATH array so storing the index for 106

the second child edge is not necessary. Depending on the stage in the construction 107

of IPATH array, the third and forth entries accommodate the indices of either edges, 108

vertices or degrees of freedom of the two ends of the edge. The fifth entry is either 109

the first or last (with minus sign) index of the interior degree(s) of freedom of the 110

edge. This information together with the degree of the edge stored in the last entry 111

are sufficient to recover all indices of the edge’s interior degrees of freedom as they 112

are numbered consecutively. The sign of the fifth entry indicates if they are increase 113

or decrease along the counterclockwise traversal of the interface. 114



Page 105

UN
CO

RR
EC

TE
D

PR
O
O
F

Mesh Regularization in Bank-Holst Parallel hp-Adaptive Meshing

Table 2. Interface data structure: tree section

tree section
type root root/leaf internal leaf

IPATH(1,*) -l/n -l/n 0/n 0/n
IPATH(2,*) child -e child -e
IPATH(3,*) e1/v1/d1 v1/d1 e1/v1/d1 v1/d1
IPATH(4,*) e2/v2/d2 v2/d2 e2/v2/d2 v2/d2
IPATH(5,*) +-d +-d +-d +-d
IPATH(6,*) degree degree degree degree
l=label, n=neighbor, e = edge k, v = vertex, d = dof

3 Mesh Regularization 115

The regularization phase requires two all-to-all communication steps. The first de- 116

scribes the initial (non-conforming in h and p) interface system, and the second de- 117

scribes the final conforming system. 118

3.1 Data Reordering 119

At the beginning of the regularization step, each processor reorders its data struc- 120

tures. For processor I, edges, vertices and degrees of freedom on the interface be- 121

tween subregion I and the rest of the domain (fine interface) appear first in their 122

respective arrays. These data are also arranged in a counterclockwise traversal of the 123

interface to aid in the creation of the parallel interface data structure IPATH. Next, 124

in all arrays, appears data corresponding to the interior of subregion I (fine interior); 125

typically this is the majority of the data on processor I. Then appears data corre- 126

sponding to the coarse part of the interface system on processor I (the interface not 127

bounding region I). Finally appears data corresponding to the interiors of subregions 128

other than I. Note that the first two blocks of this data (fine interface and fine interior) 129

represent the contribution of processor I to the global fine mesh. 130

The parallel interface data structure IPATH is arranged in two sections; at the 131

beginning is a pointer section with pointers for each processor’s contribution to the 132

fine interface system, and then two special sets of pointers, one for the local coarse 133

interface system and one for the global fine mesh as a whole (see Table 3). The 134

second section contains the tree data for individual edges on the interface system. 135

After regularization, each processor has an IPATH array that contains complete data 136

of the two-sided global fine interface system appended with data of local coarse 137

interface system. 138

3.2 Fine Mesh Regularization 139

After reordering and a global exchange of interface data, each processor has com- 140

plete information of the fine interface system. Then each process matches its in- 141

terface edges against those of it neighbors. First original coarse edges are matched 142



Page 106

UN
CO

RR
EC

TE
D

PR
O
O
F

Randolph E. Bank and Hieu Nguyen

Table 3. Interface data structure: pointer section

pointer section: 1→p+2
IPATH(1,I) first interface tree entry for subregion I
IPATH(2,I) last interface tree entry for subregion I
IPATH(3,I) first interface vertex/dof for subregion I
IPATH(4,I) last interface vertex/dof for subregion I

I = p+ 1: pointers for local coarse system
I = p+ 2: pointers for global fine system

based on their labels. Then their descendants are matched following the refinement 143

tree structures. We note here that for two neighboring processors, counterclockwise 144

traversals of the interface are in opposite directions. An example of descendants of 145

two original edges (from two different processors) is shown in Fig. 2. 146

1

2

4

5

10

11

3

6

7

14

15

1

3

7

15

14

6

2

5

11

10

4

Fig. 2. Edge matching

th
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

When a pair of matching edges is determined, their first entries in IPATH are 147

updated to store the indices (also in IPATH array) of their neighbors (change status 148

from “−l” or “0” to “n” as in Table 2). If edges without corresponding neighbors 149

are found, this indicates nonconformity in h. This is resolved by the processor with 150

the less refined interface; it executes appropriate steps of h-refinement to make its 151

interface match that of it neighbor. Although we must allow for arbitrary differences 152

in refinement, it is typical to see at most one level of refinement difference on the fine 153

portion of the interface. An example in Fig. 2 is edge 4 on the left that corresponds 154

to edge 7 on the right with two child edges 14 and 15. In this case, edge 4 on the left 155

will be h-refined one level. 156

When issues of h-conformity are resolved, the edges are re-examined to elimi- 157

nate nonconformity in degree. Since the mesh is now h-conforming, each leaf edge 158

on the fine interface system should have exactly one matching neighbor (from an- 159



Page 107

UN
CO

RR
EC

TE
D

PR
O
O
F

Mesh Regularization in Bank-Holst Parallel hp-Adaptive Meshing

other processor). If the degrees of a matching pair are different, this nonconformity 160

is resolved by the processor with the edge of lower degree; it executes appropriate 161

steps of p-refinement in order to achieve the same degree as its neighbor on the in- 162

terface edge. However, if red-green like refinement rules are applied as in [6], fixing 163

the degree for one interface edge might also change the degree of another interface 164

edge and cause further nonconformity. Thus, multiple communication steps might 165

be required to eliminate nonconformity in degree. This issue was the main motiva- 166

tion for us to find a more flexible p-refinement algorithm and more general nodal 167

basis functions for transition elements, allowing the mesh to be made both h and p 168

conforming with just one communication step. Such approach is described in [5, 7]. 169

When the global mesh is conforming, a second reordering as described above is 170

carried out locally on each processor, followed by a second all-to-all broadcast of the 171

new IPATH array. This time no nonconforming edges will be encountered during the 172

matching process. 173

3.3 Coarse Mesh Regularization 174

The coarse part of the local mesh on processor I allows a complete conforming mesh 175

of the whole domain on each processor, thus avoiding otherwise necessary commu- 176

nication steps. Due to constraints of shape regularity, the coarse mesh will typically 177

be reasonably fine in areas near the fine subregion ΩI and become more coarse in 178

regions more distant from ΩI . However, in some special situations such as having 179

a singularity outside of ΩI , the coarse mesh on processor I might be refined [8]. In 180

very unusual circumstances, it is possible for the coarse mesh on some processors to 181

be more refined (in h or in p) than the global fine mesh in some areas. Although this 182

does not influence the global fine mesh solution directly, our DD solver assumes that 183

the coarse mesh on each processor is not more refined than the global fine mesh, see 184

[4, 9]. 185

As described in Sect. 3.1, the IPATH array on each processor has a section for the 186

coarse interface edges; this part of the data structure is local and different on every 187

processor. Following the second and final broadcast of the IPATH data structure, 188

each coarse interface edge is matched with one of the global fine edges. Here, the 189

matching is one-way from a coarse edge to a fine edge only. Based on this type of 190

matching, over-refined coarse edges are identified and then unrefined in either h or p. 191

We have also observed empirically [5, 9] that the convergence properties of our 192

DD solver are enhanced when elements in the coarse regions having edges on the 193

coarse interface system are more refined than those in the interior parts of the coarse 194

region. To capture this effect, we also allow some limited refinement of elements 195

lying along the coarse interface. The level of refinement on the interface boundary of 196

ΩJ is determined by its distance from ΩI ; distance is measured in a graph in which 197

the ΩJ correspond to vertices and the edge between ΩI and ΩJ is present if and only 198

if they have a shared interface boundary. The level of allowed refinement decays as 199

2−K , where K is the distance from ΩI to ΩJ . 200



Page 108

UN
CO

RR
EC

TE
D

PR
O
O
F

Randolph E. Bank and Hieu Nguyen

Bibliography 201

[1] Randolph E. Bank. Some variants of the Bank-Holst parallel adaptive meshing 202

paradigm. Comput. Vis. Sci., 9(3):133–144, 2006. 203

[2] Randolph E. Bank and Michael Holst. A new paradigm for parallel adaptive 204

meshing algorithms. SIAM J. Sci. Comput., 22(4):1411–1443 (electronic), 2000. 205

[3] Randolph E. Bank and Michael Holst. A new paradigm for parallel adaptive 206

meshing algorithms. SIAM Rev., 45(2):291–323 (electronic), 2003. Reprinted 207

from SIAM J. Sci. Comput. 22 (2000), no. 4, 1411–1443 [MR1797889]. 208

[4] Randolph E. Bank and Shaoying Lu. A domain decomposition solver for a par- 209

allel adaptive meshing paradigm. SIAM J. Sci. Comput., 26(1):105–127 (elec- 210

tronic), 2004. 211

[5] Randolph E. Bank and Hieu Nguyen. Domain decomposition and hp-adaptive 212

finite elements. In Yunqing Huang, Ralf Kornhuber, Olof Widlund, and Jinchao 213

Xu, editors, Domain Decomposition Methods in Science and Engineering XIX, 214

Lecture Notes in Computational Science and Engineering, pages 3–13, Berlin, 215

2011. Springer-Verlag. 216

[6] Hieu Nguyen. p-adaptive and automatic hp-adaptive finite element methods for 217

elliptic partial differential equations Ph.D. Thesis, Department of Mathematics, 218

University of California, San Diego, La Jolla, CA, 2010. 219

[7] Randolph E. Bank and Hieu Nguyen. hp adaptive finite elements based on 220

derivative recovery and superconvergence. Submitted. 221

[8] Randolph E. Bank and Jeffrey S. Ovall. Dual functions for a parallel adaptive 222

method. SIAM J. Sci. Comput., 29(4):1511–1524 (electronic), 2007. 223

[9] Randolph E. Bank and Panayot S. Vassilevski. Convergence analysis of a domain 224

decomposition paradigm. Comput. Vis. Sci., 11(4–6):333–350, 2008. 225




