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1 Introduction 13

In this paper we present a nonoverlapping domain decomposition preconditioner for 14

a weakly over-penalized symmetric interior penalty method that is based on balanc- 15

ing domain decomposition by constraints (BDDC) methodology (cf. [2, 5, 7, 8]). The 16

full analysis of the preconditioner can be found in [4]. 17

Let Ω be a bounded polygonal domain in R
2 and f ∈ L2(Ω). Consider the fol- 18

lowing model problem: 19

Find u ∈ H1
0 (Ω) such that 20

∫
Ω

∇u ·∇vdx =
∫

Ω
f vdx ∀v ∈H1

0 (Ω). (1)

Let Th be a quasi-uniform triangulation of Ω , where the mesh parameter h mea- 21

sures the maximum diameter of the triangles in Th, and let 22

Vh = {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈Th}

be the discontinuous P1 finite element function space associated with Th. The model 23

problem (1) can be discretized by the following weakly over-penalized symmetric 24

interior penalty (WOPSIP) method (cf. [3, 9]): 25

Find uh ∈Vh such that 26

ah(uh,v) =
∫

Ω
f vdx v ∈Vh,

where 27
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ah(v,w) = ∑
T∈Th

∫
T

∇v ·∇wdx+ ∑
e∈Eh

1
|e|3

∫
e
Π 0

e [[v ]] ·Π 0
e [[w ]]ds, (2)

Eh is the set of the edges of Th, |e| is the length of the edge e, [[v ]] denotes the jump of 28

v across the edges, and Π 0
e is the orthogonal projection from [L2(e)]2 onto [P0(e)]2. 29

P0(e) denotes the space of constant functions on the edge e. 30

For simplicity in presentation, we consider the Poisson model on conforming 31

meshes. But the results can be extended to heterogeneous elliptic problems on non- 32

conforming meshes (cf. [4]). We note that BDDC technique was used in [6] to couple 33

conforming finite element spaces from different subdomains that allows nonmatch- 34

ing meshes across subdomain boundaries, where condition number estimates inde- 35

pendent of the coefficients were obtained for heterogeneous elliptic problems. The 36

main difference between [6] and this paper is that the finite element functions in this 37

paper can be discontinuous at the element boundaries. 38

The rest of the paper is organized as follows. In Sect. 2 we introduce a subspace 39

decomposition. We then design a BDDC preconditioner for the reduced problem in 40

Sect. 3. The condition number estimate is also presented. In Sect. 4 we report numeri- 41

cal results that illustrate the performance of the proposed preconditioner and confirm 42

the theoretical estimates. 43

Throughout the paper we will use A � B and A � B to represent the statements 44

that A≤ (constant)B and A≥ (constant)B, where the positive constant is independent 45

of the mesh size, the subdomain size, and the number of subdomains. The statement 46

A≈ B is equivalent to A � B and A � B. 47

2 A Subspace Decomposition 48

In this section we propose an intermediate preconditioner for the WOPSIP method, 49

which is based on a subspace decomposition. 50

Let Ω1, . . . ,ΩJ be a nonoverlapping partition of Ω aligned with Th and Γ = 51(⋃J
j=1 ∂Ω j

) \ ∂Ω be the interface of the subdomains. We assume that the subdo- 52

mains are shape regular polygons (cf. [1, Sect. 7.5]). We denote the diameter of Ω j 53

by Hj and define H to be max1≤ j≤J Hj. Eh,Γ is the subset of Eh containing the edges 54

on Γ . 55

First we decompose Vh into two subspaces as follows: 56

Vh =Vh,C⊕Vh,D,

where 57

Vh,C = {v ∈Vh : [[v ]] = 0 at the midpoints of the edges on the boundaries

of the subdomains} ,
Vh,D =

{
v ∈Vh : {{v}}= 0 at the midpoints of the edges in Eh,Γ and

v = 0 at the midpoints of the edges in Ω \Γ } .
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Here {{v}} denotes the average of v from the two sides of an edge in Eh,Γ . 58

Let Ah : Vh −→Vh
′ be the symmetric positive-definite (SPD) operator defined by 59

〈Ahv,w〉= ah(v,w) ∀v,w ∈Vh,

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual. Simi- 60

larly, we define Ah,D : Vh,D −→V ′h,D and Ah,C : Vh,C −→V ′h,C by 61

〈Ah,Dv,w〉= ah(v,w) ∀v,w ∈Vh,D, (3)

〈Ah,Cv,w〉= ah(v,w) ∀v,w ∈Vh,C. (4)

Given any v ∈Vh, we have a unique decomposition v = vD + vC where vD ∈ Vh,D 62

and vC ∈Vh,C. Then based on the definitions of the subspaces Vh,D and Vh,C, it can be 63

shown that 64

〈Ahv,v〉 ≈ 〈Ah,DvD,vD〉+ 〈Ah,CvC,vC〉 ∀v ∈Vh. (5)

Remark 1. Since functions in Vh,C are continuous at the midpoints of the edges in 65

Eh,Γ , we have 66

ah(v,w) =
J

∑
j=1

ah, j(v j,wj) ∀v,w ∈Vh,C, (6)

where v j = v
∣∣
Ω j

, wj = w
∣∣
Ω j

and 67

ah, j(v j,wj) = ∑
T∈Th
T⊂Ω j

∫
T

∇v j ·∇wj dx+ ∑
e∈Eh
e⊂Ω j

1
|e|3

∫
e
Π 0

e [[v j ]] ·Π 0
e [[wj ]]ds. (7)

Note that the second sum on the right-hand side of (7) is over the edges interior to Ω j 68

and therefore ah, j(·, ·) is a localized bilinear form. The introduction of the subspace 69

decomposition where the bilinear form can be localized as shown in (6) and (7) is 70

the key ingredient in designing our preconditioner in Sect. 3. 71

Next we decompose Vh,C into two subspaces Vh,C(Ω \Γ ) and Vh,C(Γ ) defined as 72

follows: 73

Vh,C(Ω \Γ ) = {v ∈Vh,C : v = 0 at all the midpoints of the edges in Eh,Γ },
Vh,C(Γ ) = {v ∈Vh,C : ah(v,w) = 0 ∀w ∈Vh,C(Ω \Γ )}.

The space Vh,C(Γ ) is the space of discrete harmonic functions, which are uniquely 74

determined by their values at the midpoints of the edges in Eh,Γ . 75

Let the SPD operators Ah,Ω\Γ :Vh,C(Ω \Γ )−→Vh,C(Ω \Γ )′ and Sh :Vh,C(Γ )−→ 76

Vh,C(Γ )′ be defined by 77

〈Ah,Ω\Γ v,w〉= ah(v,w) ∀v,w ∈Vh,C(Ω \Γ ),

〈Shv,w〉= ah(v,w) ∀v,w ∈Vh,C(Γ ).
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Note that given any vC ∈ Vh,C, we have a unique decomposition vC = vC,Ω\Γ + vC,Γ 78

where vC,Ω\Γ ∈ Vh,C(Ω \Γ ) and vC,Γ ∈ Vh,C(Γ ). It follows from the definitions of 79

Vh,C(Ω \Γ ) and Vh,C(Γ ) that 80

〈Ah,CvC,vC〉= 〈Ah,Ω\Γ vC,Ω\Γ ,vC,Ω\Γ 〉+ 〈ShvC,Γ ,vC,Γ 〉 ∀vC ∈Vh,C. (8)

Based on the relations (5) and (8), we define a preconditioner B1 : Vh
′ −→Vh for 81

Ah by 82

B1 = IDA−1
h,DIt

D + Ih,Ω\Γ A−1
h,Ω\Γ It

h,Ω\Γ + IΓ S−1
h It

Γ ,

where ID : Vh,D −→ Vh, Ih,Ω\Γ : Vh,C(Ω \Γ ) −→ Vh, and IΓ : Vh,C(Γ ) −→ Vh are 83

natural injections. 84

It follows from (5) and (8) that 85

κ(B1Ah) =
λmax(B1Ah)

λmin(B1Ah)
≈ 1. (9)

Remark 2. Let us observe the properties of the preconditioner B1 from the imple- 86

mentational point of view. First it is easy to implement the solve A−1
h,D because Ah,D 87

is a block diagonal matrix with small blocks. Next in view of (6) and (7), the solve 88

A−1
h,Ω\Γ can be implemented by solving independent subdomain problems in paral- 89

lel. On the other hand, noting that Sh is a global solve, we need to design a good 90

preconditioner for Sh in order to obtain a good parallel preconditioner for Ah. 91

3 A BDDC Preconditioner 92

In this section we propose a preconditioner for the Schur complement operator Sh 93

based on the BDDC methodology. 94

Let Vh, j be the space of discontinuous P1 finite element functions on Ω j that 95

vanish at the midpoints of the edges on ∂Ω j ∩ ∂Ω , and Vh(Ω j) be the subspace of 96

Vh, j whose members vanish at the midpoints of the edges on ∂Ω j. We denote by H j 97

the space of local discrete harmonic functions defined by 98

H j =
{

v ∈Vh, j : ah, j(v,w) = 0 ∀w ∈Vh(Ω j)
}
.

The space Hm is defined by gluing the spaces H j together along the interface 99

Γ through enforcing the continuity of the mean values on the common edges of 100

subdomains: 101

Hm = {v ∈ L2(Ω) : v j = v|Ω j ∈H j for 1≤ j ≤ J

and
∫

∂Ω j∩∂Ωk

v j ds =
∫

∂Ω j∩∂Ωk

vk ds for 1≤ j,k ≤ J},

and we equip Hm with the bilinear form 102

am
h (v,w) = ∑

1≤ j≤J

ah, j(v j,wj).
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Let EH be the set of the edges of the subdomains Ω1, · · · ,ΩJ . The BDDC precon- 103

ditioner is based on a decomposition of Hm into orthogonal subspaces with respect 104

to am
h (·, ·): 105

Hm = H̊ ⊕H0, (10)

where 106

H̊ =

{
v ∈Hm :

∫
E

vds = 0 ∀E ∈ EH

}

and 107

H0 =
{

v ∈Hm : am
h (v,w) = 0 ∀w ∈ H̊

}
. (11)

Then we equip H0 and the localized subspaces H̊ j (1≤ j ≤ J) of H̊ : 108

H̊ j =

{
v ∈H j :

∫
E

vds = 0 for all the edges E of Ω j

}
, 109

with the SPD operators S0 : H0 −→H ′
0 and S j : H̊ j −→ H̊ ′

j defined by 110

〈S0v,w〉= am
h (v,w) ∀v,w ∈H0, (12)

〈S jv,w〉= ah, j(v,w) ∀v,w ∈ H̊ j. (13)

Note that Vh,C(Γ ) is a subspace of Hm and there exists a projection PΓ : Hm → 111

Vh,C(Γ ) defined by averaging: 112

(PΓ v)(me) = {{v}}(me) ∀e ∈ Eh,Γ ,

where me is the midpoint of e. The operator PΓ connects the BDDC preconditioner 113

based on Hm to the Schur complement operator Sh on Vh,C(Γ ). 114

We can now define the BDDC preconditioner BBDDC : Vh,C(Γ )′ −→ Vh,C(Γ ) for 115

the Schur complement operator Sh : Vh,C(Γ )−→Vh,C(Γ )′ as follows: 116

BBDDC = (PΓ I0)S−1
0 (PΓ I0)

t +
J

∑
j=1

(PΓE j)S−1
j (PΓE j)

t ,

where I0 is the natural injection of H0 into Hm and E j : H̊ j −→ H̊ is the trivial 117

extension defined by 118

E j v̊ j =

{
v̊ j on Ω j

0 on Ω \Ω j
∀ v̊ j ∈ H̊ j .

We then obtain the preconditioner B2 : V ′h −→ Vh for Ah by replacing the global 119

solve S−1
h in (2) with the preconditioner BBDDC: 120

B2 = IDA−1
h,DIt

D + Ih,Ω\Γ A−1
h,Ω\Γ It

h,Ω\Γ + IΓ BBDDCIt
Γ .

We can analyze the condition number of BBDDCSh by the theory of additive 121

Schwarz preconditioners (cf. [1, 10, 11], and the references therein). The proof of 122

the following result can be found in [4]. 123
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Lemma 1. We have the following bounds for the eigenvalues of BBDDCSh 124

λmin(BBDDCSh)≥ 1,

λmax(BBDDCSh)�
(

1+ ln
H
h

)2

.

Combining (5), (8) and Lemma 1, we have the following estimate of the condition 125

number of the preconditioned system B2Ah. 126

Theorem 1. There exists a positive constant C, independent of h,H and J, such that 127

κ(B2Ah) =
λmax(B2Ah)

λmin(B2Ah)
≤C

(
1+ ln

H
h

)2

. 128

4 Numerical Results 129

In this section we present some numerical results that illustrate the performance of 130

the preconditioners B1 and B2. 131

We consider the model problem (1) on the unit square (0,1)2 with the exact solu- 132

tion u(x,y) = y(1− y)sin(πx). We use a uniform triangulation Th of isosceles right 133

triangles, where the mesh parameter h represents the length of the horizontal/verti- 134

cal edges. The domain Ω is divided into J nonoverlapping squares aligned with Th 135

and the length of the horizontal/vertical edges of the squares is denoted by H. The 136

discrete problem obtained by the WOPSIP method is solved by the preconditioned 137

conjugate gradient method. The iteration is stopped when the relative residual is less 138

than 10−6. 139

Numerical results for the preconditioners B1 and B2 are presented in Table 1, 140

which confirm the theoretical estimates in (9) and Theorem 1. 141

Table 1. Results for the preconditioners B1 and B2 with J = 42

h H/h
B1Ah B2Ah

κ λmin λmax κ λmin λmax

2−3 2 1.4206 8.2624e-1 1.1738 1.4478 8.2623e-1 1.1962
2−4 4 1.1916 9.1258e-1 1.0874 1.7782 9.1300e-1 1.6235
2−5 8 1.0919 9.5608e-1 1.0439 2.3215 9.5673e-1 2.2211
2−6 16 1.0433 9.7880e-1 1.0212 3.0490 9.7994e-1 2.9879

We present in Table 2 the iteration counts and total time to solution for a parallel 142

implementation of our preconditioner. For comparison, results on a single processor 143

of the same machine without preconditioning are also presented for J = 1. The three 144

operations A−1
h,D,A

−1
h,Ω\Γ , and BBDDC are performed one after the other, sequentially, 145
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but each of these operators is evaluated in parallel on the decomposed domain with 146

one subdomain per processor. Iteration counts are consistent with our theory and 147

confirm again that the method is scalable, and the running times show good parallel 148

speedup for large problems. 149

Table 2. Parallel performance of the preconditioner B2

t2.1
h

J = 1 J = 42,H = 2−2 J = 82,H = 2−3 J = 162,H = 2−4

t2.2Its Wall clock time Its Wall clock time Its Wall clock time Its Wall clock time

t2.32−6 235 0.46 7 0.37 7 0.5 5 1.14
t2.42−7 450 3.75 8 2.22 8 1.06 6 1.96
t2.52−8 884 35.45 9 20.12 8 4.35 6 2.71
t2.62−9 1786 319.0 8 126.15 8 27.15 7 7.81

The numbers κ (B2Ah)/(1+ ln(H/h))2 and κ (BBDDCSh)/(1+ ln(H/h))2 are 150

plotted against H/h in Fig. 1. As H/h increases these two numbers settle down to 151

around 0.2, which indicates that the estimates in Lemma 1 and Theorem 1 are sharp. 152
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Fig. 1. Left figure: the behavior of C = κ (BBDDCSh)/(1+ ln(H/h))2 for the BDDC precon-
ditioner; right figure: the behavior of C = κ (B2Ah)/(1+ ln(H/h))2 for the preconditioner
B2
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