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1 Introduction

The goal of this paper is to improve a condition number bound proven in [5] for a
Balancing Domain Decomposition Method by Constraints (BDDC) for the Reissner-
Mindlin plate bending problem discretized with MITC elements. This BDDC pre-
conditioner is based on selecting the plate rotations and deflection degrees of freedom
at the subdomain vertices as primal continuity constraints. In [5], we proved that the
resulting BDDC algorithm is scalable in the number of subdomains N and indepen-
dent of the plate thickness ¢ and that the condition number x of the preconditioned
Reissner-Mindlin plate problem is bounded by

Kk <C(H/h),

with C a constant independent of the plate thickness ¢, the mesh size i and the sub-
domain size H. In the present contribution, we prove the improved quasi-optimal
result

K < C(1+1log® (H/h)).

We remark that the MITC discretization of Reissner-Mindlin problems can lead to
very ill-conditioned discrete system, with condition number

Kno ~ Ch™2t72.

Introduced in [11] and analyzed in [17, 21, 22], BDDC methods have evolved from
previous domain decomposition work on Balancing Neumann-Neumann methods.
BDDC algorithm have been extended in recent years from scalar elliptic problems
to almost incompressible elasticity [12, 24], the Stokes system [18], flow in porous
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media [28], and spectral element discretizations [15, 23, 24]. BDDC and overlapping
Schwarz methods for Reissner-Mindlin plate problems discretized with Falk-Tu ele-
ments have been studied in the recent Ph.D. thesis [16], while multigrid method for
plates have been studied in [26]. Among the several finite element works for plates,
we mention [2, 3, 7-10, 13, 14, 19, 20, 27].

2 The MITC Reissner-Mindlin Plate Bending Problem

Continuous problem. Let Q be a polygonal domain in R? representing the midsur-
face of the plate, for simplicity assumed to be clamped on the whole boundary 9 Q.
The Reissner-Mindlin plate bending problem (see [1, 7]) reads

a(0, 1) + ke (8 — V™, 0 — V) = (£,v)_vn € [H(Q)Pv € HY(Q).
ey
with u the shear modulus, & is the shear correction factor, ¢ the plate thickness, u®*
the deflection, @ the rotation of the normal fibers and f the applied scaled normal
load. Moreover, (-, -) stands for the standard scalar product in L?() and a(-,-) is the
bilinear form

{ Find 0% € [H} (2)]?,u® € H} (L) such that

a(0%,m) = (Ce(67),e(n)),

with C the positive definite tensor of bending moduli and £(-) the symmetric gradient
operator. Introducing the scaled shear stresses ¥ = ukt ~2(0° — Vu®), problem (1)
can be written in terms of the-following mixed variational formulation, where for
simplicity we have assumed uk = 1:

Find 0 € [H} (2)]%,u® € H} (R),y* € [L*(£2)]* such that
a(@“,n) + (¥, n—-Vv) = (fv) vne[Hy(Q)PveHy(Q2) (2
(04— Vu*,s)—1>(y,8) =0 Vsc [L2(Q)]*.
Discrete problem. We discretize the plate problem by MITC (Mixed Interpolation
of Tensorial Components) elements; see e.g. [1, 7, 8] for more details on this family
of elements. Let 7;, denote a triangular or quadrilateral conforming finite element
mesh on €2, of characteristic mesh size 4. Let @, U and I" be the discrete spaces for
rotations, deflections and shear stresses, respectively and define X = @ x U. Then the
Reissner-Mindlin plate bending problem (2) discretized with MITC elements reads
Find (0,u) € X, y € I such that
a(@,n)+(y,1In—Vv)=(f,v) v(n,v)eX 3)
(IT@® —Vu,s)—1*(y,s)=0 VseT,
where IT : ([H'(Q)]>+T) — I is the MITC reduction operator. Using the second

equation of (3), shear stresses can be eliminated to obtain the following positive
definite discrete formulation:
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Find (0,u) € X such that
“)

b((8,u),(n,v)) = (f,v) V(n,v)eX,

where we have defined b((0,u),(n,v)) :=a(@,n) +¢>(IT1 6 — Vu, [T — Vv). In
this paper, we address directly the positive definite problem (4), in the spirit of [4,'5],
instead of the mixed formulation (3). For the convergence analysis of the MITC
elements, see e.g. [3, 8, 13, 25]. The MITC elements perform optimally with respect
to the polynomial degree and regularity of the solution, and their rate of convergence
is independent of the thickness parameter 7.

3 Iterative Substructuring and BDDC Preconditioning

Subspace decomposition and Schur complement. We decompose the domain €2
into N open, nonoverlapping subdomains €2; of characteristic size H forming a
shape-regular finite element mesh 7g. This coarse triangulation 7y is further refined
into a finer triangulation 7, of characteristic size /; both meshes will typically be
composed of triangles or quadrilaterals. In the sequel, we assume that the material
tensor C is constant on the whole domain.

As it is standard in iterative substructuring methods, we first reduce the problem
to the interface I' = ( A 0€;) \ 3£, by implicitly eliminating the interior degrees
of freedom. In variational form, this process consists in a suitable decomposition of
the discrete space X = @ x-U. More precisely, let us define W = X, i.e. the space
of the traces of functionsin’X; as well as the local spaces X; = XN [H} (£€2;)]*. The
space X can be decomposed as X = & X; & 7#(W). Here 7 : W — X is the
discrete “plate-harmonic” extension operator defined by solving the problem

Find 77 (wr) € X such that 7 (wr)|r = wr and
b(%(wr),vl):O VveX;, i=1,2,...,N.

Defining the Schur complement bilinear form s(wr,vr) = b( (wr), 5 (vr)), the
Schur complement system reads s(ur,vr) =< ]‘,vr > VYvr € W, for a suitable
right-hand side f.

The BDDC Reissner-Mindlin plate preconditioner. BDDC preconditioners, intro-
duced in [11] and analyzed in [21], can be regarded as an evolution of Balancing
Neumann-Neumann preconditioners for the Schur complement system. In this sec-
tion, we briefly recall the BDDC preconditioner of [5].

Define I; := d€;, and I}; = dQ;NJQ;, i,j € {1,2,...,N}, the common edge
between two adjacent subdomains €2; and €2;. The local spaces W; are the spaces
of discrete functions defined by W; = W, i =1,2,...,N. Let #; : W; — X]q,
i=1,2,...,N, represent the restriction of the operator .7 to the subdomain £2;

Find 77;(w;) € X|q, such that 77 (w;)|1; = w; and
bi(Hi(wi),vi)=0  VvieX,
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where the b;(-,-) are given by restricting the integrals in b(-,-) to the domain €;,
i=1,2,...,N. The local bilinear forms are s;(w;,v;) = b;(J;w;, 7 v;),Yw;,v; €
Wi LetR,i=1,2,...,N be the prolongation operators which extend any function
of W; to the function of W which is zero at all the nodes not on I;. Note that for
wveWw, Zfil si(Rw,Rv) = s(w,v). For x € I', we also define the weight N, =
# { JEN|xe 8.(2.,-} and the weighted counting operators §; : W; — W, (and their
inverses 6;) by
Oivi (x) = Nyvi(x), 5iTvi (x) = N;lv,- (x), Vxnodeof ;NT.

Let C; : W; — R3¢ be local constraint operators that read function values at the
corners of the subdomain £2;, with cc; the number of corners of the subdomain. Then
we define the local constrained spaces

W,‘ = {W,' S W,’ | C,‘W,‘ = 0},

and a global coarse space Wy C W associated with the function values at the subdo-
main vertices. Given the number m of such subdomain vertices, let w, € R3 be a
vector representing the respective nodal values. Then the space W, is defined by

N
W() = {ZR,TQ-TW()J | C,‘W()’,' = RiCWC,WC S R3m,s,~(wo’,',w0,,-) — min},
i=1

with Ric the operator extracting the vertex values for the subdomain £2; from the
global vector w, of all the subdomain vertex values. Any element w € W can be
uniquely decomposed as w = Wo+2§\]:1 w;, withwyg e Wy, w;e W, fori=1,...,N.
We use inexact bilinear forms defined by

fi(W,',V,') = s,-(6,w,»,6,-v,-) Yw;,v;e W;,i=1,2,...,N,

N
So(wo,vo) = Y. si(wo i, vo,) Vwo,vp € Wy
P

Finally, we define the coarse operator Py : W — W by
So(Pou,vo) = s(u,vo) Vv € Wy,

and the local operators P; = RlTF‘, W — RiTWl- by
§5;(Pu,v;) = s(u,RTv;) Vv, € W,.

Then, our BDDC method is defined by the preconditioned operator

P=YP. 5)

The matrix form of P and the associated preconditioner can be found in [5].
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4 A Quasi-optimal BDDC Convergence Bound

We start by recalling the following assumption from [5], using the same notations.

Assumption 1 Given any I, i = 1,2,...,N, let & represent the set of the edges of
I;. Then, we assume that there exist two positive constants k., k™ and a boundary

seminorm | - |y on W, i=1,2,...,N, such that
|wt|2 <K'si(wi,w;) Yw; e W, (6)
|W[|T(1— > k*si(W[,W[) VYw; e W;, 7
wilt) = X wilze Ywi€ Wi, 8)
ecs;

where | - |y is a given seminorm on the edge e.

We notice that we cannot adopt the obvious choice [w;| ;) = si(wi, w;), since it
can be shown that it does not satisfy (8), not even with a bound including a uniform
constant. We have the following main result.

Theorem 2. [f Assumption 1 holds, then the condition number K of the Reissner-
Mindlin BDDC preconditioned operator P in (5) satisfies the bound

K(P) <C(V+log* (H/h)),

with the constant C depending only on the material constants and mesh regularity,
and not on the plate thickness t.

Here we can only outline the main steps of the proof; full details can be found
in [6]. The proof proceeds by showing that Assumption 1 holds for the MITC plate
bending problem (4) and by establishing the respective upper and lower bounds for
the constants k,,k* in (6), (7). These bounds in turn will prove Theorem 2 since
k(P) <C(1+45k; 'k*), see [5, 21] for a proof.

Upper bound (6). The upper bound is established exactly as in [5, Sect.5.2].
Lower bound (7). To prove the lower bound, we note that the local spaces w,,
i=1.2,...,N, are composed of rotation and deflection parts, which we denote by
W, = 6 x U;. Accordingly, we denote the rotation and deflection parts of the con-
strained space by W; = @; x U;, where the functions of @; and U; vanish at the
subdomain corner nodes. We work with the following seminorm defined in [5]:

Wil3 ) = Zecs; |w,~|%(e> Yw; = (0;,u;) € W;, where for all edges e € &;
|w,

= 10: + At 2107 By,

T(e) ™ ¥(e)

10ily() := inf lle(W)ll2a)
M ettt ()2 yle=01, (@)

T is the tangent unit vector at the boundary and the apex indicates the derivative,
in the direction of 7, for functions defined on the (one dimensional) boundary. We
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now improve the lower bound proved in [5] by introducing a splitting of the plate
rotation variable. Consider w; = (0;,u;) € W; and define the splitting 052) € @52> =

span{BjT}leE, by
/952)-';:/6,~-r—u§ Ve € &,
e e

and let Olm =0,— 652) so that 8; = 651> + 052). By construction, it holds
/uﬁ—@lgl)-'tzo Ve € &;.

We introduce also the related splitting of w;

w; = wgl) —l—w(z), wil) = (ui,Ogl)), wl@ T (0,952)).

An improved lower bound can be obtained by estimating the split terms in the fol-
lowing two lemmas; see [6] for complete proofs.

Lemma 1. There exists a constant C > O independent of h such that for all edges e
of all subdomains €2;

Wil z(e) = (141, 0) o) > C(1(ui 8 ey +1(0, 01 1)) -

This lemma follows from the inequality ||(0, 9,(2))| l(e) < Cl[Wil|z(c)> that is derived

in [6] from the definition of 052) , ascaling argument and an inverse inequality. A sim-
ilar argument applied to the extension of 6,‘2 by zero inside £2; leads to the following
lemma.

Lemma 2. There exists a constant C > 0 independent of h such that
2 2 2)2
s,~(w§ ),wl( )) < C|w§ ) ()

The main step in the proof of Theorem 2 is the bound of the following proposition,
obtained by considering an auxiliary rotated Stokes problem with boundary data l.l
and several technical estimates, see [6, Proposition 5.5].

Proposition 1. There exists a constant C > 0 independent of h such that

1 1 1
sitwy" ") <€ (14 1og? (/h)) [w) i
The upper bound then follows by combining the three previous results. Indeed, first
recalling the splitting w; = wl(1> + wl@ and using a triangle inequality, then applying

Lemma 2 and Proposition 1, finally using Lemma 1 yields

si(wi,w;) < 2(si(wl(1)7wl(1)) +si(w§2),w§2)))

1 2
< (1 +10g> (/m) w2y + 1w By ) < CQL+1og (H /0wl

Bound (7) is therefore proved with k; ! = C (1 +log® (H/h)), with the constant C
depending only on the material constants and mesh regularity.

We remark that an extensive set of numerical tests, also including jump in the
coefficients, which are in complete accordance with Theorem 2, can be found in [5].
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