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1 Introduction 9

The exchange of ground- and surface water plays a crucial role in a variety of prac- 10

tically relevant processes ranging from flood protection measures to preservation of 11

ecosystem health in natural and human-impacted water resources systems. 12

Commonly accepted models are based on the shallow water equations for over- 13

land flow and the Richards equation for saturated–unsaturated subsurface flow with 14

suitable coupling conditions. Continuity of mass flow across the interface is natu- 15

ral, because it directly follows from mass conservation. Continuity of pressure is 16

typically imposed for simplicity. Mathematically, this makes sense for sufficiently 17

smooth height of surface water as occurring, e.g., in filtration processes [9, 14]. Here 18

we impose Robin-type coupling conditions modelling a thin, nearly impermeable 19

layer at the bottom of the river bed that may cause pressure discontinuities; an effect 20

which is known in hydrology as clogging (see [16] or [8, p. 1376]). From a mathe- 21

matical perspective, clogging can be regarded as a kind of regularization, because, 22

in contrast to Dirichlet conditions, Robin conditions can be straightforwardly formu- 23

lated in a weak sense. 24

Existence and uniqueness results for the Richards equation and the shallow wa- 25

ter equations are rare and hard to obtain, and nothing seems to be known about 26

solvability of coupled problems. Extending the general framework of heteroge- 27

neous Steklov–Poincaré formulations and iterative substructuring [10, 13] to time- 28

dependent problems, we introduce a Robin–Neumann iteration for the continuous 29

coupled problem and motivate its feasibility by well-known existence results for the 30

linear case. As surface and subsurface flow are only weakly coupled by clogging and 31

continuity of mass flux, different discretizations with different time steps and differ- 32

ent meshes can be used in a natural way. This is absolutely necessary, to resolve the 33

vastly different time and length scales of surface and subsurface flow. Discrete mass 34

conservation can be proved in a straightforward way. 35

Finally, we illustrate our considerations by coupling a finite element discretiza- 36

tion of the Richards equation based on Kirchhoff transformation [4] with a simple 37
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upwind discretization of surface flow. Numerical experiments confirm discrete mass 38

conservation and show fast convergence of the Robin–Neumann iteration for real-life 39

soil data. 40

2 Coupled Surface and Subsurface Flow 41

Saturated–unsaturated subsurface flow during a time interval (0,Tend) in a porous 42

medium occupying a bounded domain Ω ⊂R
d , d = 2,3, is described by the Richards 43

equation 44

nθ (p)t + div v(p) = 0 , v(p) =−K
μ

kr(θ (p))∇(p−ρgz) . (1)

The porosity n, permeability K, viscosity μ , and density ρ are given parameters, and 45

g is the earth’s gravitational acceleration. The unknown capillary pressure p is related 46

to saturation θ (p) and relative permeability kr(θ (p)) by equations of state [6, 7] 47

θ (p) =

⎧⎨
⎩

θm +(θM−θm)
(

p
pb

)−λ
for p≤ pb

θM for p≥ pb

kr(θ ) =
(

θ −θm

θM−θm

)3+ 2
λ
, θ ∈ [θm,θM]⊂ [0,1] ,

with residual saturation θm, maximal saturation θM , bubbling pressure pb < 0, and 48

pore size distribution factor λ > 0. Let Γ ⊂ ∂Ω denote the coupling boundary of the 49

porous medium with a surface flow, and denote the outward normal vector of Γ by n. 50

We impose the coupling by Robin conditions p|Γ −αv ·n ∈ L2((0,Tend),H−1/2(Γ )) 51

on Γ and homogeneous Neumann conditions on ∂Ω \Γ . With compatible initial 52

conditions θ0 ∈ L1(Ω) we assume that (1) admits a unique weak solution p ∈ 53

L2((0,Tend),H1(Ω)). This assumption is motivated by known existence results [1] 54

for the Kirchhoff transformed Richards equation (see also [4]) and is, obviously, sat- 55

isfied in the case of saturated flow θ ≡ θM . 56

The surface flow on Γ is described by the shallow water equations 57

ht + div q = r, (2a)

qt + div F(h,q) =−gh∇φ (2b)

where φ : Γ0→Γ is a parametrization of the surface topography of Γ . The unknown 58

water height h and discharge q, as well as a given mass source r are functions on 59

(0,Tend)×Γ0. For ease of presentation, we assume Γ =Γ0 so that Γ is an open subset 60

of Rd−1. For d = 3, i.e., Γ ⊂ R
2, the flux function F takes the form 61

F =

(
F1

F2

)
, F1(h,q) =

(
q2

1/h+ 1
2 gh2

q1q2/h

)
, F2(h,q) =

(
q1q2/h

q2
2/h+ 1

2 gh2

)
62
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with q = (q1,q2). It degenerates to F(h,q) = q2/h+ 1
2 gh2 for Γ ⊂ R. For suitable 63

initial conditions and inflow conditions on ∂Γin ⊂ ∂Γ we assume that (2) has a weak 64

solution (h,q) ∈ L∞((0,Tend),L∞(Γ ))d in the sense of distributions D ′((0,Tend)× 65

Γin) where Γin = Γ ∪ ∂Γin. Since regularity results for nonlinear hyperbolic systems 66

(2) do not seem to be available we note that this assumption is satisfied in the linear 67

case [15, Theorem 2.2]. 68

Mass conservation provides the Neumann coupling condition 69

r = v ·n .

Following, e.g. [16], we postulate a nearly impermeable river bed with thickness ε
 70

1 and permeability Kε (clogging). Then Darcy’s law provides the flux v =−Kε
μ ∇pε . 71

Setting ∇pε = ε−1(ρgh− p|Γ )n, we obtain the Robin coupling condition 72

p|Γ −αv ·n = ρgh (3)

with leakage coefficient α = με
Kε

. Note that (3) generally implies a pressure disconti- 73

nuity across the interface Γ between ground and surface water. 74

Remark 1. In light of the above regularity assumptions on pressure p and surface 75

water height h coupling surface and subsurface flow by continuity p|Γ = ρgh of cap- 76

illary and hydrostatic pressure is generally not possible, because there is a regularity 77

gap between the trace p|Γ ∈ L2((0,Tend),H1/2(Γ )) and h ∈ L∞((0,Tend),L∞(Γ )) �⊂ 78

L2((0,Tend),H1/2(Γ )) (see, e.g., [5, p. 148]) However, sufficient smoothness is avail- 79

able in special cases like, e.g., in- and exfiltration processes [14]. 80

3 Steklov–Poincaré Formulation and Substructuring 81

We introduce the Robin-to-Neumann map 82

SΩ (h) = v(h) ·n = α−1(p|Γ −ρgh) 83

for h ∈ L∞((0,Tend),L∞(Γ )) ⊂ L2((0,Tend),H−1/2(Γ )). Here, p is the solution of 84

the Richards equation (1) with Robin conditions (3). Assuming that for given 85

h ∈ L∞((0,Tend),L∞(Γ )) and corresponding inflow boundary conditions, the sec- 86

ond part (2b) of the shallow water equations has a unique weak solution q(h) ∈ 87

L∞((0,Tend),L∞(Γ ))d−1, we set 88

SΓ (h) =−div q(h) . 89

The Steklov–Poincaré formulation of the coupled Richards equation and shallow 90

water equations then reads 91

ht = SΩ (h)+ SΓ (h) . (4)

Just as (2a) and (4) is understood in the sense of distributions D ′((0,Tend)×Γin). 92
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In complete analogy to the stationary case [10, 13] we introduce a damped 93

Robin–Neumann iteration 94

hν+1/2
t −SΓ (h

ν+1/2) = SΩ (hν) , hν+1 = hν +ω(hν+1/2−hν) , (5)

with a suitable damping parameter ω ∈ (0,∞) and with an initial iterate given by 95

h0 ∈ L∞((0,Tend),L∞(Γ )). Each step amounts to the solution of the Richards equa- 96

tion with Robin boundary conditions (3) to evaluate the source term SΩ (hν ), and the 97

subsequent solution of the shallow water equations (2) to evaluate hν+1/2. The feasi- 98

bility of (5) requires existence and uniqueness of these solutions. Note the similarity 99

to waveform relaxation methods [11]. 100

After selecting a step size ΔT = Tend/N with suitable N ∈ N and correspond- 101

ing time levels Tk = kΔT , the Robin–Neumann iteration (5) can also be applied on 102

subintervals [Tk−1,Tk], k = 1, . . . ,N. 103

4 Discretization and Discrete Robin–Neumann Iteration 104

We first derive a discrete version of the Steklov–Poincaré formulation (4) on a fixed 105

time interval [Tk,Tk+1] with 0 ≤ Tk < Tk+1 = Tk +ΔT ≤ Tend. To this end, we intro- 106

duce intermediate time levels ti = Tk + iτ , i = 0, . . . ,M, with step size τ = ΔT/M and 107

suitable M ∈ N. Spatial discretization is based on a partition TΓ of Γ into simplices 108

T that is regular in the sense that the intersection of two simplices T , T ′ ∈ TΓ is 109

either a common face, edge, vertex, or empty. We introduce the corresponding space 110

of discontinuous finite elements of order q≥ 0 by 111

VΓ = {v ∈ L2(Γ ) | vT is a polynomial of degree at most q ∀T ∈ TΓ } , 112

and let h = (hi)
M
i=0 denote approximations hi ∈ VΓ at ti, i = 0, . . . ,M. 113

Then, utilizing the forward difference quotient ∂t hi = (hi+1− hi)/τ , a discrete 114

Steklov–Poincaré formulation reads 115

∂t hi = SΓ (h)i + SΩ (h)i, i = 0, . . . ,M−1 . (6)

Here and in the rest of this section, subscripts i indicate approximations taken at time 116

ti. 117

For given h = (hi)
M
i=0, the discrete surface flow 118

(SΓ (h)i,v)Γ = ∑
T∈TΓ

(
(q(h)i,∇v)T +(Gh(hi,q(h)i) ·nT ,v)∂T

) ∀v ∈ VΓ (7)

results from an explicit discontinuous Galerkin discretization of (2a), characterized 119

by the discrete flux function Gh. Here, (·, ·)U stands for the L2 scalar product on U = 120

Γ , T , ∂T , respectively; nT is the outward normal on T , and the discrete discharge 121

qi = q(h)i is obtained from an explicit discontinuous Galerkin discretization of (2b) 122

(∂tqi,v)Γ = ∑
T∈TΓ

(
(F(hi,qi),∇v)T +(Gq(hi,qi) ·nT ,v)∂T

) ∀v ∈ (VΓ )
d−1 . (8)
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Since we expect the dynamics of subsurface flow to be much slower than the 123

surface water dynamics, we use the macro time step ΔT for an implicit time dis- 124

cretization of SΩ (h). The spatial discretization is based on conforming piecewise 125

linear finite elements 126

VΩ = {v ∈C(Ω ) | v|T is affine linear ∀T ∈TΩ} 127

with respect to a regular partition TΩ of Ω . No compatibility conditions on TΩ and 128

TΓ are required. For given pk ∈ VΩ and hk+1 ∈ VΓ , the discrete capillary pressure 129

pk+1 ∈ VΩ is then obtained from the variational equality 130

n〈θk+1,v〉Ω +ΔT
(
(vk+1,∇v)Ω

+α−1(〈pk+1|Γ ,v〉Γ − (ρghk+1,v)Γ )
)
= n〈θk,v〉Ω ∀v ∈ VΩ .

(9)

Here 〈·, ·〉Ω denotes the lumped L2 scalar product on Ω , 〈·, ·〉Γ is the corresponding 131

lumped L2 scalar product on Γ , θk = θ (pk), and vk+1 is a discretization of the flux v 132

at Tk+1. Once pk+1 ∈ VΩ is available, we set for all i = 0, . . . ,M 133

(SΩ (h)i,v)Γ = α−1(pk+1|Γ −ρghk+1,v)Γ ∀v ∈ VΓ . (10)

Note that SΩ (h)i is constant on the macro interval [Tk,Tk+1] and only depends on 134

hk+1. 135

Testing (6) and (9) with constant functions 1 ∈ VΓ and 1 ∈ VΩ , respectively, and 136

using 〈pk+1|Γ ,1〉Γ = (pk+1|Γ ,1)Γ we obtain discrete mass conservation. 137

Proposition 1. The discrete Steklov–Poincaré formulation (6) with SΓ and SΩ de- 138

fined by (7) and (10) is mass conserving in the sense that 139

(hk+1,1)Γ + n〈θk+1,1〉Ω = (hk,1)Γ + n〈θk,1〉Ω + τ
M−1

∑
i=0

(Gh(hi,qi) ·n∂Γ ,1)∂Γ 140

holds for k = 0,1, . . . , with n∂Γ denoting the outward normal on ∂Γ . 141

We emphasize that this result holds for arbitrary discretizations of the Richards 142

flux v. 143

The discrete Steklov–Poincaré formulation (6) gives rise to the discrete damped 144

Robin–Neumann iteration 145

∂t h
ν+1/2
i −SΓ (h

ν+1/2)i = SΩ (hν)i , hν+1
i = hν

i +ω(hν+1/2
i −hν

i ) , (11)

with suitable damping parameter ω ∈ (0,∞), and an initial iterate h0
i ∈ VΓ for i = 146

0, . . . ,M. Each step amounts to the solution of the discretized Richards equation (9) to 147

obtain SΩ (hν)i from (10) with pk+1 = pν+1
k+1 , and to M time steps of the discontinuous 148

Galerkin discretization of (2) described by (7) and (8) to obtain hν+1/2
i , i = 1, . . . ,M. 149

For k> 0 the initial iterate h0 is the solution of the preceding time step. We emphasize 150

that no compatibility conditions on the different meshes TΓ and TΩ are necessary, 151

because only weak coupling conditions are involved. 152
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5 Numerical Experiments 153

We consider a model problem on a square Ω ⊂R
2 of side length 10m and select Γ as 154

the upper part of its boundary. The soil parameters are n= 0.437, θm = 0.0458, θM = 155

1, pb =−712.2 Pa, λ = 0.694, and K = 6.66 ·10−9 m2 (sandy soil). The viscosity and 156

density of water is μ = 1 m Pa s and ρ = 1,000kgm−3, respectively. In accordance 157

with measurements [16] we select the leakage coefficient as α = ρgL−1 with L = 158

10−6 s−1 allowing for large pressure jumps across the interface. 159

We choose the initial conditions θ0 ≡ θ (−20Pa) = 0.1401, h(0) ≡ 1 m, q(0) ≡ 160

10m2 s−1, and inflow boundary conditions for h(0, t) and q(0, t) alternating between 161

2 and 1 m and 20 and 10m2 s−1, respectively, with a period of 10 s. This leads to 162

a supercritical water flow from left to right, which can result, for example, from 163

opening a flood gate. 164

Fig. 1. The water height hi at times ti = iτ , i = 30,150,250,500

Fig. 2. The pressure p at times Tk = kΔT , k = 200,1,000,2,000,3,000
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For the porous media flow on Ω we use the uniform time step size ΔT = 50 s and 165

a triangulation TΩ resulting from six uniform refinement steps applied to a partition 166

of Ω into two triangles with hypotenuse from lower left to upper right. The Richards 167

equation (1) is discretized by the implicit scheme based on Kirchhoff transformation 168

suggested in [4], and truncated monotone multigrid [12] is used as the algebraic 169

solver. For the surface flow we use the time step size τ = γΔT with γ = 3−1 ·10−4, 170
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and the partition TΓ consists of 400 elements of equal length. Note that TΓ does not 171

match with TΩ |Γ . The shallow water equations (2) are discretized by a discontinuous 172

Galerkin method (7) with VΓ consisting of piecewise constant functions, and we use 173

simple upwind flux functions Gh and Gq in (7) and (8), respectively. The final time 174

is Tend = 3.5 ·104 s. For the implementation we used the DUNE libraries [2] and the 175

domain decomposition module dune-grid-glue [3]. 176

Figure 1 shows the evolution of the surface water height h over the first period 177

of the boundary conditions. The porous medium flow is much slower, as expected. 178

Figure 2 shows the evolution of the pressure. Water enters the domain from the top, 179

and after about 3,600 macro time steps or, equivalently, 3,000 m, the soil saturation 180

is constant at about 75 %. Then, the domain gets fully saturated starting from the 181

bottom. Hydrostatic pressure builds up and is fully reached at time step 4,700. 182

At each time step we observe discrete mass conservation up to machine precision. 183

The total relative mass loss over the entire evolution is about 10−10. Our numerical 184

computations thus nicely reproduce the theoretical findings of Proposition 1. 185

In order to investigate the convergence behavior of the Robin–Neumann iteration 186

(11), we consider the algebraic error ‖hM−hν
M‖L1(Γ ) at the end of the first time inter- 187

val [0,T1] with T1 =Mτ . It turns out that for the given leakage coefficient α = ρg106 s 188

(cf. [16]), the convergence rates are in the range of 10−4. They remain there during 189

the entire evolution. For each time step only two or three iterations were necessary 190

to reduce the estimated algebraic error below the threshold 10−12. This is explained 191

by the weak (in the physical sense) coupling of surface water and subsurface flow 192

associated with large values of α . 193

The convergence speed of (11) decreases for decreasing α . This is illustrated in 194

Fig. 3 which shows convergence rates ρ of (11) for various α together with the cor- 195

responding optimal damping factors ω determined numerically. Convergence rates
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Fig. 3. Convergence rates ρ and associated optimal damping parameter ω over leakage coef-
ficient α
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196

deteriorate for α < 4 · 10−2. Moreover, for α < 2 · 10−3 ill-conditioning of the dis- 197

cretized Richards equation (9) leads to severe problems in the numerical solution. 198

Hence, using the Robin coupling (3) to enforce continuity of pressure by penaliza- 199
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tion rather than for modelling the clogging effect would require the construction of 200

suitable preconditioners and a careful selection of α . 201
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