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Summary. This paper considers the hp-finite element discretization of an elliptic boundary 11

value problem using tetrahedral elements. The discretization uses a polynomial basis in which 12

the number of nonzero entries per row is bounded independently of the polynomial degree. 13

The authors present an algorithm which computes the nonzero entries of the stiffness matrix 14

in optimal complexity. The algorithm is based on sum factorization and makes use of the 15

nonzero pattern of the stiffness matrix. 16

1 Introduction 17

hp-finite element methods (hp-FEM), see e.g. [6, 9], have become very popular for 18

the approximation of solutions of boundary value problems with more regularity. In 19

order to obtain the approximate finite element solution numerically stable and fast, 20

the functions have to be chosen properly in hp-FEM. For quadrilateral and hexahe- 21

dral elements, tensor products of integrated Legendre polynomials are the prefered 22

basis functions, see [2]. For triangular and tetrahedral elements, the element can be 23

considered as collapsed quadrilateral or hexahedron. This allows us to use tensor 24

product functions. In order to obtain sparsity in the element matrices and a moder- 25

ate increase of the condition number, integrated Jacobi polynomials can be used, see 26

[3, 5, 7]. Then, it has been shown that the element stiffness and mass matrix have a 27

bounded number of nonzero entries per row, see [3–5] which results in a total number 28

of O(pd), d = 2,3, nonzero entries in two and three space dimensions, respectively. 29

However, the explicit computation of the nonzero entries is very involved. 30

This paper presents an algorithm which computes the element stiffness and mass 31

matrices in O(p3) operations in two and three space dimensions. The algorithm com- 32

bines ideas based on sum factorization, [8], with the sparsity pattern of the matrices. 33

One other important ingredient is the fast evaluation of the Jacobi polynomials. 34

The outline of this paper is as follows. Section 2 defines H1-conforming, i.e. 35

globally continuous piecewise polynomials, basis functions on the tetrahedron. The 36
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sum factorization algorithm is presented in Sect. 3. Section 4 is devoted to the eval- 37

uation of the Jacobi polynomials. The complexity of the algorithm is estimated in 38

Sect. 5. 39

2 Definition of the Basis Functions 40

For the definition of our basis functions Jacobi polynomials are required. Let 41

pα
n (x) =

1
2nn!(1− x)α

dn

dxn

(
(1− x)α(x2−1)n) n ∈ N0, α,β >−1 (1)

be the nth Jacobi polynomial with respect to the weight function (1− x)α . The func- 42

tion pα
n is a polynomial of degree n, i.e., pα

n ∈ Pn((−1,1)), where Pn(I) is the space 43

of all polynomials of degree n on the interval I. In the special case α = 0, the func- 44

tions p0
n(x) are called Legendre polynomials. Moreover, let 45

p̂α
n (x) =

∫ x

−1
pα

n−1(y) dy n≥ 1, p̂α
0 (x) = 1 (2)

be the nth integrated Jacobi polynomial. Several relations are known between the 46

different families of Jacobi polynomials, see e.g. [1]. In this paper, the relations 47

pα−1
n (x) =

1
α + 2n

[
(α + n)pα

n (x)−npα
n−1(x)

]
, (3)

p̂α
n+1(x) =

2n+α−1
(2n+ 2)(n+α)(2n+α−2)

×((2n+α−2)(2n+α)x+α(α−2)) p̂α
n (x)

− (n−1)(n+α−2)(2n+α)

(n+ 1)(n+α)(2n+α−2)
p̂α

n−1(x), n≥ 1. (4)

are required. 48

Let �̂ be the reference tetrahedron with the four vertices at (−1,−1,−1), 49

(1,−1,−1), (0,1,−1) and (0,0,1). On this element, the interior bubble functions 50

φi jk(x,y,z) = ui(x,y,z)vi j(y,z)wi jk(z), i≥ 2, j,k ≥ 1, i+ j+ k≤ p (5)

are proposed for H1 elliptic problems in [3, (29)], where the auxiliary functions are 51

ui(x,y,z) = p̂0
i

(
4x

1−2y− z

)(
1−2y− z

4

)i

,

vi j(y,z) = p̂2i−1
j

(
2y

1− z

)(
1− z

2

) j

,

wi jk(z) = p̂2i+2 j−2
k (z).

In addition, there are vertex, face and edge based basis functions which can be 52

regarded as special cases of the above functions (5) for limiting cases of the indices 53

i, j and k, see [3] for more details. 54
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Then, the element stiffness matrix for the Laplacian on the reference element �̂ 55

with respect to the interior bubbles reads as 56

K =

[∫
�̂

∇φi jk(x,y,z) ·∇φi′ j′k′(x,y,z) d(x,y,z)

]
i, j,k≤p,i′+ j′+k′≤p

. (6)

The transformation to the unit cube (−1,1)3 (Duffy trick) and the evaluation of the 57

nabla operation results in the integration of 21 different summands. More precisely, 58

K =
21

∑
m=1

κmÎ (m)
59

with known numbers κm ∈ R and 60

Î (m) =

[∫ 1

−1
px,1(x)px,2(x) dx

×
∫ 1

−1

(
1− y

2

)γy

py,1(y)py,2(y) dy

×
∫ 1

−1

(
1− z

2

)γz

pz,1(z)pz,2(z) dz

]
i+ j+k<p;i′+ j′+k′<p

.

The structure of the functions and coefficients is displayed in Table 1. 61

One summand is the term 62

Î (6) =
(
mi jk,i′ j′k′

)
i+ j+k≤p,i′+ j′+k′≤p (7)

which corresponds (before the Duffy trick) to 63

mi jk,i′ j′k′ =
∫
�̂

p̂0
i

(
4x

1−2y− z

)
p̂0

i′

(
4x

1−2y− z

)(
1−2y− z

4

)i+i′

× p̂2i−1
j

(
2y

1− z

)
p̂2i′−1

j′

(
2y

1− z

)(
1− z

2

) j+ j′

×p2i+2 j−2
k−1 (z)p2i′+2 j′−2

k′−1 (z) d(x,y,z).

The Duffy transformation applied to (7) gives 64

mi jk,i′ j′k′ =
∫ 1

−1
p̂0

i (x)p̂0
i′(x) dx

∫ 1

−1

(
1− y

2

)i+i′+1

p̂2i′−1
j′ (y)p̂2i−1

j (y) dy

×
∫ 1

−1

(
1− z

2

)i+ j+i′+ j′+2

p2i+2 j−2
k−1 (z)p2i′+2 j′−2

k′−1 (z) dz. (8)

It has been shown in [3], this matrix has the sparsity pattern 65

mi jk,i′ j′k′ = 0 if (i, j,k, i′, j′,k′) ∈ Sp
re f (i jk, i′ j′k′) (9)
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t1.1px,1 px,2 γy py,1 py,2 γz pz,1 pz,2

t1.2Î (1) p0
i−1 p0

i′−1 i+ i′ −1 p̂2i−1
j p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.3Î (2) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.4Î (3) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.5Î (4) p̂0
i p0

i′−2 i+ i′ p2i−1
j−1 p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.6Î (5) p0
i−2 p0

i′−2 i+ i′ −1 p̂2i−1
j p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.7Î (6) p̂0
i p̂0

i′ i+ i′+ 1 p̂2i−1
j p̂2i′−1

j′ β +β ′+ 2 p−2+2β
k−1 p−2+2β ′

k′−1

t1.8Î (7) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−2 p̂2i′−1

j′ β +β ′+ 1 p̂−2+2β
k p−2+2β ′

k′−1

t1.9Î (8) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p̂2i′−1

j′ β +β ′+ 1 p̂−2+2β
k p−2+2β ′

k′−1

t1.10Î (9) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p̂2i′−1

j′ β +β ′+ 1 p̂−2+2β
k p−2+2β ′

k′−1

t1.11Î (10) p̂0
i p̂0

i′ i+ i′+ 1 p̂2i−1
j p2i′−1

j′−2 β +β ′+ 1 p−2+2β
k−1 p̂−2+2β ′

k′

t1.12Î (11) p̂0
i p̂0

i′ i+ i′+ 1 p̂2i−1
j p2i′−1

j′−1 β +β ′+ 1 p−2+2β
k−1 p̂−2+2β ′

k′

t1.13Î (12) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−2 p2i′−1

j′−2 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.14Î (13) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p2i′−1

j′−2 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.15Î (14) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−2 p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.16Î (15) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.17Î (16) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p2i′−1

j′−2 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.18Î (17) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.19Î (18) p̂0
i p0

i′−2 i+ i′ p̂2i−1
j p̂2i′−1

j′ β +β ′+ 1 p−2+2β
k−1 p̂−2+2β ′

k′

t1.20Î (19) p̂0
i p0

i′−2 i+ i′ p2i−1
j−2 p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.21Î (20) p̂0
i p0

i′−2 i+ i′ p2i−1
j−1 p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

t1.22Î (21) p0
i−2 p0

i′−2 i+ i′ −1 p̂2i−1
j p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Table 1. Integrands for K , where β = i+ j, β ′ = i′+ j′

where 66

Sp
re f (i jk, i′ j′k′) = {i+ j+ k≤ p, i′+ j′+ k′ ≤ p, |i− i′| �∈ {0,2}

∨ |i− i′+ j− j′|> 4 ∨ |i− i′+ j− j′+ k− k′|> 4}
cf. [3, Theorem 3.3]. In the following the more general case 67

Sp(i jk, i′ j′k′) = {i+ j+ k≤ p, i′+ j′+ k′ ≤ p, |i− i′|> 2

∨ |i− i′+ j− j′|> 4 ∨ |i− i′+ j− j′+ k− k′|> 4} (10)

is considered, e.g. the orthogonalities for |i− i′|= 1 are not assumed. 68

All 21 integrals give rise to a similar band structure as detailed above for Î (6)
69

and can thus be treated in the same way as explained below for the particular case 70
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m κm

1,6,9,19 1

5,21 5
4

4,8,20 c1(i, j)

7,19 c2(i, j)

3,11,17 c1(i′, j′)

2,15 c1(i, j)c1(i′, j′)

13 c1(i, j)c2(i′, j′)

10,16 c2(i′, j′)

14 c1(i′, j′)c2(i, j)

21 c2(i, j)c2(i′, j′)

Table 2. Coefficients κm for K , where c1(i, j) =−1
2

2i−1
2i+2 j−3

and c2(i, j) =
j−1

2i+2 j−3
.

of Î (6). The only difference are shifts in the weights α of the Jacobi polynomials or 71

changes of the weight functions (Table 2).AQ1 72

3 Sum Factorization 73

In this section, we present an algorithm for the fast numerical generation of the local 74

element matrices (6) for tetrahedra. The methods are based on fast summation tech- 75

niques presented in [7, 8] and are carried out in detail for the example of the matrix 76

Î (6) (8). 77

All one dimensional integrals in (8) are computed numerically by a Gaussian 78

quadrature rule with points xk, k = 1, . . . , p+ 1 and corresponding weights ωk. The 79

points and weights are chosen such that 80

∫ 1

−1
f (x) dx =

p+1

∑
l=1

ωl f (xl) ∀ f ∈P2p. (11)

Since only polynomials of maximal degree 2p are integrated in (8), these integrals 81

are evaluated exactly. Therefore, we have to compute 82
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mi jk,i′ j′k′ =
p+1

∑
l=1

ωl p̂0
i (xl)p̂0

i′(xl)

×
p+1

∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i′−1
j′ (xm)p̂2i−1

j (xm)

×
p+1

∑
n=1

ωn

(
1− xn

2

)i+ j+i′+ j′+2

p2i+2 j−2
k (xn)p2i′+2 j′−2

k′ (xn),

i.e., for all (i, j,k, i′, j′,k′) �∈Sp(i jk, i′ j′k′), cf. (10), (9). This is done by the following 83

algorithm. 84

Algorithm 3.1 1. Compute 85

h(1)i;i′ =
p+1

∑
l=1

ωl p̂0
i (xl)p̂0

i′(xl) 86

for all i, i′ ∈ N satisfying |i− i′| ≤ 2 and i, i′ ≤ p. 87

2. Compute 88

h(2)i, j;i′, j′ =
p+1

∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i−1
j (xm)p̂2i′−1

j′ (xm) 89

for all i, j, i′, j′ ∈ N satisfying |i− i′| ≤ 2, |i + j− i′ − j′| ≤ 4, i + j ≤ p and 90

i′+ j′ ≤ p. 91

3. Compute 92

h(3)β ,k;β ,′k′ =
p+1

∑
n=1

ωn

(
1− xn

2

)β+β ′+2

p2β−2
k (xn)p2β ′−2

k′ (xn) 93

for all k,k′,β ,β ′ ∈ N satisfying |β − β ′| ≤ 4, |β + k− β ′ − k′| ≤ 4, β + k ≤ p 94

and β ′+ k′ ≤ p. 95

4. For all (i, j,k, i′, j′,k′) �∈ Sp(i jk, i′ j′k′), set 96

mi jk,i′ j′k′ = h(1)i;i′ h
(2)
i, j;i′, j′h

(3)
i+ j,k;i′+ j′,k′ . 97

The algorithm requires the numerical evaluation of Jacobi and integrated Jacobi 98

polynomials at the Gaussian points xl , l = 1, . . . , p+ 1. In the next subsection, we 99

present an algorithm which computes the required values p̂α
k (xl), m = 1, . . . , p+ 1, 100

k = 1, . . . , p, α = 1, . . . ,2p in O(p3) operations. 101

4 Fast Evaluation of Integrated Jacobi Polynomials 102

The integrated Jacobi polynomials needed in the computation of mi jk,i′ j′k′ (7) are 103

p̂0
i (x), p̂2i−1

j (x) (progressing in odd steps with respect to the parameter α) and 104
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p̂2i+2 j−2
k (x) (progressing in even steps with respect to the parameter α). For i+ j+ 105

k ≤ p with i≥ 2 and j,k ≥ 1 this means that 106

[
p̂0

i (x)
]

2≤i≤p ,[p̂
3
j(x)]1≤ j≤p, . . . , [p̂

2p−3
j (x)]1≤ j≤p,

[p̂4
k(x)]1≤k≤p, . . . , [p̂

2p−4
k (x)]1≤k≤p

107

are needed. Since one group proceeds in even, the other one in odd steps, the total of 108

integrated Jacobi polynomials that are needed is 109

p̂a
n(x), 1≤ n≤ p−3, 3≤ a≤ 2p−3, 110

if we consider the integrated Legendre polynomials separately. However, integrating 111

both sides of (3) yields 112

p̂α−1
n+1 (x) =

1
2n+α

(
(n+α)p̂α

n+1(x)−np̂α
n (x)

)
, 113

valid for all n≥ 0. Using this relation starting from the integrated Jacobi polynomials 114

of highest degree, i.e., α = 2i− 1 = 2p− 3, the remaining Jacobi polynomials can 115

be computed using only two elements of the previous row. Note that for the initial 116

values n = 1 we have p̂α
1 (x) = 1+ x for all α . For assembling the polynomials of 117

highest degree the three term recurrence (4) is used. Summarizing, the evaluation of 118

the functions at the Gaussian points can be done in O(p3) operations. This is optimal 119

in the three-dimensional case, but not in the two-dimensional case. 120

5 Complexity of the Algorithm 121

The cost of the last three steps is O(p3), the first step requires O(p2) operations. 122

Together with the evaluation of the Jacobi polynomials, the algorithm requires in 123

total O(p3) flops. 124

This algorithm uses only the sparsity structure (10). Since all matrices Î (m), 125

m= 1, . . . ,21, have a similar sparsity structure of the form (10), this algorithm can be 126

extended to all ingredients which are required for assembling/computing the element 127

stiffness matrix (6) for the Laplacian, see [3]. The algorithm can also be extended 128

to mass matrices or matrices arising from the discretization of elliptic problems in 129

H(curl ) and H(div), see [4]. For two-dimensional problems, the third step of the 130

algorithm is not necessary. However, the values h(2)i, j;i′, j′ have to be computed. Since 131

this requires O(p3) floating point operations, the total cost in 2D is also O(p3). 132
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Rachowicz, and Adam Zdunek. Computing with hp-adaptive finite elements. 151

Vol. 2. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science 152

Series. Chapman & Hall/CRC, Boca Raton, FL, 2008. Frontiers: three dimen- 153

sional elliptic and Maxwell problems with applications. 154

[7] George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element methods 155

for computational fluid dynamics. Numerical Mathematics and Scientific Com- 156

putation. Oxford University Press, New York, second edition, 2005. 157

[8] J.M. Melenk, K. Gerdes, and C. Schwab. Fully discrete hp-finite elements: Fast 158

quadrature. Comp. Meth. Appl. Mech. Eng., 190:4339–4364, 1999. 159

[9] Ch. Schwab. p- and hp-finite element methods. Numerical Mathematics and Sci- 160

entific Computation. The Clarendon Press Oxford University Press, New York, 161

1998. Theory and applications in solid and fluid mechanics. 162




