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1 Introduction 12

We are interested in the approximation of 2D elliptic equations with dominated ad- 13

vection and featuring boundary layers. In order to reduce the computational complex- 14

ity, the domain is split into two subregions, the first one far from the layer, where 15

we can neglect the viscosity effects, and the second one next to the layer. In the 16

latter domain the original elliptic equation is solved, while in the former one, the 17

pure convection equation obtained by the original one by dropping the diffusive term 18

is approximated. The interface coupling is enforced by the non-conforming mortar 19

method. We consider two different sets of interface conditions and we compare them 20

for what concerns both computational efficiency and stability. One of the two sets of 21

interface conditions turns out to be very effective, especially for very small viscosity 22

when the mortar formulation of the original elliptic problem on the global domain 23

can fail. 24

2 The Heterogeneous Problem 25

We consider an open bounded domain Ω ⊂ R
2 with Lipschitz boundary ∂Ω , split 26

into two open subsets Ω1 and Ω2 such that Ω = Ω 1 ∪Ω 2,Ω1 ∩Ω2 = /0. Then, we 27

denote by Γ = ∂Ω1 ∩ ∂Ω2, the interface between the sub domains and we assume 28

that Γ is of class C1,1. Given f ∈ L2(Ω), b0 ∈ L∞(Ω), ν ∈ L∞(Ω2 ∪Γ ) and b ∈ 29

[W 1,∞(Ω)]2 satisfying the following inequalities: 30

∃ν0 ∈ R such that ν(x)≥ ν0 > 0, ∀x ∈Ω2∪Γ , 31

∃σ0 ∈ R such that b0(x)+ 1
2 divb(x)≥ σ0 > 0, ∀x ∈Ω , 32

we look for two functions u1 and u2 (defined in Ω 1 and Ω 2, respectively) solutions 33

of the heterogeneous problem 34
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⎧⎪⎪⎨
⎪⎪⎩

div(bu1)+ b0u1 = f in Ω1,
div(−ν∇u2 +bu2)+ b0u2 = f in Ω2,
u1 = 0 on (∂Ω1 \Γ )in

u2 = 0 on ∂Ω2 \Γ

(1)

and satisfying the interface conditions 35

u1 = u2 on Γ in, b ·nΓ u1 +ν
∂u2

∂nΓ
−b ·nΓ u2 = 0, on Γ . (2)

nΓ denotes the normal unit vector to Γ oriented from Ω1 to Ω2, while for any non- 36

empty subset S ⊆ ∂Ω1, Sin = {x ∈ S : b(x) · n1(x) < 0} and Sout = {x ∈ S : b(x) · 37

n1(x)≥ 0} are the inflow and the outflow parts of S, respectively. 38

Equation (2) (named IC1) express the continuity of the velocity field across the 39

inflow part of the interface and the continuity of the fluxes across the whole interface. 40

They can be equivalently expressed as (named IC2): 41

u1 = u2, ν
∂u2

∂nΓ
= 0 on Γ in, −b ·nΓ u1 = ν

∂u2

∂nΓ
−b ·nΓ u2 on Γ out . (3)

Problem (1) with either interface conditions (2) or (3) is well-posed, see [5]. 42

The heterogeneous problem (1), with either interface conditions IC1 or IC2, can 43

formally be written as an interface problem by means of Steklov-Poincaré opera- 44

tors (see, e.g., [3, 5]). Let us define the trace spaces Λ1 = L2
b(Γ in) = {v : Γ in → 45

R :
√|b ·nΓ |v ∈ L2(Γ in)} and Λ2 = H1/2

00 (Γ in) = {v : L2(Γ in) : ∃ṽ ∈ H1/2(∂Ω2) : 46

ṽ|Γ in = v, ṽ|∂Ω2\Γ in = 0}. 47

Solving (1) and (2) is equivalent to seeking λk ∈Λk for k = 1,2, such that 48

{
S1λ1 +S2λ2 = χ1 + χ2 in Λ ′2,
λ1 = λ2|Γ in in Λ2,

(4)

where 49

S1λ1 =−b ·n1uλ1
1 , S2λ2 = ν

∂uλ2
2

∂n2
−b ·n2uλ2

2 , on Γ , (5)

are the local Steklov-Poincaré operators, while uλ1
1 and uλ

2 are the solution of 50

{
div(buλ1

1 )+ b0uλ1
1 = 0 in Ω1,

uλ1
1 = 0 on (∂Ω1 \Γ )in, uλ1

1 = λ on Γ in,
(6)

and 51

{
div(−ν∇uλ2

2 +buλ2
2 )+ b0uλ2

2 = 0 in Ω2

uλ2
2 = 0 on ∂Ω2 \Γ , uλ2

2 = λ2 on Γ ,
(7)

respectively. Finally, 52
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χ1 = b ·n1u f
1 , χ2 =−ν

∂u f
2

∂n2
+b ·n2u f

2 =−ν
∂u f

2

∂n2
, (8)

where u f
1 and u f

2 are the solutions of problems like (6) and (7), respectively, with null 53

trace on the interface and external load f . Note that χ1|Γ in = 0. 54

If interface conditions IC2 are considered instead of IC1, the resulting Steklov- 55

Poincaré equation reads: seek λk ∈Λk, for k = 1,2 such that 56

{
S 0

1 λ1 +S 0
2 λ2 = χ1 + χ2 in Λ ′2

λ1 = λ2|Γ in in Λ2
(9)

where 57

S 0
1 λ1 =

{
0 on Γ in

−b ·n1uλ1
1 on Γ out ,

S 0
2 λ2 =

⎧⎪⎪⎨
⎪⎪⎩

ν
∂uλ2

2

∂n2
on Γ in

ν
∂uλ2

2

∂n2
−b ·n2uλ2

2 on Γ out .

(10)

58

Remark 1. It is straightforward to prove that the operator S 0
2 is always coercive on 59

Λ2, whereas S2 is coercive only if smallness assumption on b is assumed. If, e.g., 60

‖b‖L∞(Γ ) ≤ ε0, with 0≤ ε0 ≤ 2min{ν0,σ0}/C2
∗ , (11)

(where C∗ is the constant of the trace inequality ‖v‖L2(∂Ω2)
≤ C∗‖v‖H1(Ω2)

) is sat- 61

isfied then S2 is coercive on Λ2. For this reason, the solution of problem (4) may 62

produce oscillations around Γ in when advection dominates (i.e. the global Péclet 63

number is large), as will be shown later in our numerical results. 64

3 Mortar Coupling for Spectral Element Discretization 65

The discretization of the differential equation within each sub domain is performed 66

by the quadrilateral conforming Spectral Element Method (SEM). We refer to [4] 67

for a detailed description of this method. For k = 1,2, let Tk = {Tk,m}Mk
m=1 be a par- 68

tition of the computational domain Ωk ⊂ R
2. The SEM finite dimensional space on 69

Ω k is denoted by Xk,δk
and it is the set of functions in C0(Ω k) whose restriction to 70

Tk,m is a polynomial of degree Nk in each direction. δk is an abridged notation for 71

“discrete”, that accounts for the local geometric sizes hk,m of Tk,m and the local poly- 72

nomial degrees Nk along each direction. Both geometric and polynomial conformity 73

is guaranteed inside Ω k. 74

The finite dimensional spaces in which we look for the SEM solution of either (4) 75

or (9) are: Λ1,δ1
⊂ Λ1 and Λ2,δ2

⊂ Λ2. Their elements are globally continuous func- 76

tions on Γ in and Γ , respectively, and local polynomials of degree Nk on each edge 77

induced by the partition Tk. 78

For k = 1,2, we denote by Nk,Γ the set of nodes of Tk ∩Γ whose cardinality is 79

Nk,Γ . Similar notations are used for the nodes lying on either Γ in or Γ out . 80
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The finite dimensional basis {μ (i)
1 }

N1,Γ in

i=1 of Λ1,δ1
({μ (i)

2 }
N2,Γ
i=1 of Λ2,δ2

, resp.) is 81

composed by the characteristic Lagrange polynomials in Ω1 (Ω2, resp.) associated 82

to the Legendre-Gauss-Lobatto (LGL) nodes of N1,Γ in (N2,Γ , resp.). Then we set 83

(S2,δ2
)i j =

∫
Γ S2μ ( j)

2 μ (i)
2 dΓ for i, j = 0, . . . ,N2,Γ , and analogous notations are used 84

to define matrices S0
2,δ2

, S1,δ1
and S0

1,δ1
. Because of the high cost to compute integrals 85

exactly, all integrals are approximated by Legendre-Gauss-Lobatto (LGL) quadrature 86

rules. 87

We consider non-conforming couplings, i.e. we suppose that either the two par- 88

titions T1 and T2 do not share the same edges on Γ and/or the polynomial degrees 89

do not coincide in the hyperbolic domain Ω1 and in the elliptic one Ω2. We adopt 90

mortar methods (see, e.g., [2]) to glue non-conforming discretization across Γ . 91

The endpoints of the edges of T1 ∩Γ in are denoted by v(i)1 , for i = 1, . . . ,N1,v. 92

Λ̃1,δ1
is a suitable finite dimensional space of functions living on Γ in and its basis 93

functions ψl are characterized by being L2 functions on Γ in and local polynomials 94

of degree N1 − 2 on each edge of T1 ∩Γ in. Therefore, the dimension of Λ̃1,δ1
is 95

NΛ̃1
= N1,Γ in −N1,v. By choosing Ω2 as the master domain and Ω1 as the slave, the 96

continuity constraint λ1 = λ2|Γ in is imposed weakly, i.e. by requiring that 97

∫
Γ in

(λ1,δ1
−λ2,δ2

)ψldΓ = 0 ∀ψl ∈ Λ̃1,δ1
, (12)

jointly with the strong continuity at the nodes v(i)1 of T1∩Γ in, for i= 1, . . . ,N1,v. This 98

leads us to define a new set of mortar functions in Λ1,δ1
, which are denoted by μ̃ (k)

1 99

(for k = 1, . . . ,N2,Γ in) and satisfy the constraints: 100

⎧⎪⎪⎨
⎪⎪⎩

μ̃ (k)
1 (v(i)1 ) = μ (k)

2 (v(i)1 ), i = 1, . . . ,N1,v and v(i)1 being endpoint
of at least one edge of T1∩Γ in∫

Γ in
(μ̃ (k)

1 − μ (k)
2 )ψldΓ = 0, l = 1, . . . ,NΛ̃1

and for all ψl ∈ Λ̃1,δ1
.

(13)

Remark 2. We choose Ω2 as the master domain because the nature of the heteroge- 101

neous problem requires to work with the trace of the elliptic solution on the whole 102

interface and with the trace of the hyperbolic one only on Γ in. Therefore it is more 103

convenient to have the master trace at disposal on the whole Γ , instead of on a part 104

of it. 105

The matrix form of system (13) reads 106

PΞ = Φ, (14)

where Ξ = [ξ jk] ∈ R
N1,Γ in×N2,Γ in is defined by the relations 107

μ̃ (k)
1 =

N1,Γ in

∑
j=1

ξ jkμ ( j)
1 , k = 1, . . . ,N2,Γ in , (15)
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while P ∈ R
N1,Γ in×N1,Γ in and Φ ∈ R

N1,Γ in×N2,Γ in , are defined starting from (13). The 108

matrix P is non-singular in view of the inf-sup condition for QN −QN−2 [2]. Once 109

the discretization in Ω1 and Ω2 has been chosen, the matrix Ξ can be explicitly 110

computed by solving (14). 111

The matrix Ξ enforces the gluing between degrees of freedom defined on N2,Γ in 112

and N1,Γ in . Therefore, Steklov-Poincaré equations (4) and (9) can be written in a 113

nonconforming setting, by the use of matrix Ξ . 114

On Γ out no continuity constraint, neither strong nor weak, is imposed, since the 115

continuity of fluxes is a natural consequence of the interface equation. Nevertheless, 116

on Γ out we have to compute integrals of basis functions associated to two different 117

meshes. To this aim we introduce the matrix Q ∈ R
N2,Γ out×N1,Γ out for the evaluations 118

of functions of Λ1,δ1
at the nodes of T2 ∩Γ , and the matrix D = Mout

2,δ2
Q(Mout

1,δ1
)−1, 119

where Mout
k,δk

are the mass matrices induced by the LGL quadrature formulas on Γ out , 120

for k = 1,2. 121

The nonconforming finite dimensional counterpart of (4) reads: find λk,δk
∈Λk,δk

122

for k = 1,2, such that 123

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
S2,δ2

+

[
Ξ T Sin

1,δ1
Ξ 0

DSout
1,δ1

Ξ 0

])

︸ ︷︷ ︸
Sδ

[
λ in

2,δ2

λ out
2,δ2

]
=

[
Min

2,δ2
χ in

2,δ2

Mout
2,δ2

χout
2,δ2

+Dχout
1,δ1

]

λ1,δ = Ξλ in
2,δ2

(16)

whereas that of (9) becomes: find λk,δk
∈Λk,δk

for k = 1,2, such that 124

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
S0

2,δ2
+

[
0 0
DSout

1,δ1
Ξ 0

])

︸ ︷︷ ︸
S0

δ

[
λ in

2,δ2

λ out
2,δ2

]
=

[
Min

2,δ2
χ in

2,δ2

Mout
2,δ2

χout
2,δ2

+Dχout
1,δ1

]

λ1,δ = Ξλ in
2,δ2

.

(17)

The upper scripts in and out denote the restriction to Γ in and Γ out , resp. 125

The numerical solutions of these linear systems is carried out by preconditioned 126

Bi-CGStab iterations (see, [6]). 127

When conforming discretization is used across the interface (i.e. δ1 = δ2), matrix 128

Ξ reduces to the identity matrix. In this situation, it is well known (see, e.g. [5]) 129

that S0
2,δ2

is an optimal preconditioner for the matrix S0
δ , i.e. ∃C0 > 0 independent of 130

δ such that its spectral condition number K ((S0
2,δ2

)−1S0
δ ) is bounded by C0. When 131

δ1 = δ2, S0
2,δ2

is an optimal preconditioner also for Sδ (see [3]), i.e. there exists C1 > 0 132

independent of δ such that K ((S0
2,δ2

)−1Sδ ) ≤ C1, and numerical results show that 133

C0 ≤C1. 134

We extend here the use of the preconditioner S0
2,δ to the non-conforming case. 135
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Fig. 1. Preconditioned Bi-CGStab iterations. The viscosity is ν = 10−2. At left, N2 = 14 is
fixed, at right, N1 = 14 is fixed. 4×4 equal spectral elements are taken in each Ωk

4 Numerical Results 136

Test case: the computational domain Ω = (−1,1)2 is split in Ω1 = (−1,0.8)× 137

(−1,1) and Ω2 = (0.8,1)× (−1,1). The interface is Γ = {0.8}× (−1,1). The 138

data of the problem are: b = [5y,1− x]t , b0 = 1, f = 1 and the inflow interface 139

is Γ in = {0.8}× (−1,0). The imposed Dirichlet boundary conditions are: u1 = 1 140

on ((−1,0.8)× {−1}) ∪ ({−1} × (0,1)), u2 = 0 on {1} × (−1,1), u2 = 1 on 141

(0.8,1)×{−1}, while the homogeneous Neumann condition ∂u2
∂n2

= 0 is imposed 142

on (0.8,1)×{1}. 143

Because of the presence of a boundary layer near the right vertical side, the mesh 144

is refined there (without losing the conformity inside Ω2) to prevent the numerical 145

solution to be affected by spurious oscillations. 146

In Fig. 1 the number of Preconditioned Bi-CGStab (PBi-CGStab) iterations (with 147

preconditioner S2,δ2
) required to reduce the relative norm of the residual of 12 orders 148

of magnitude is plotted versus the polynomial degrees N1 and N2 of the mortar dis- 149

cretization. These results refer to ν = 10−2 and show that the Steklov-Poincaré for- 150

mulation (9) performs better than (4). The analysis of this and other test cases leads 151

us to conjecture that K ((S0
2,δ2

)−1S0
δ ) ≤C0 still holds for non-conforming coupling 152

(δ1 �= δ2), while 153

K ((S0
2,δ2

)−1Sδ )�C1K (ΞΞ T )�C1

{
(N2−N1 + 1)3/2 if N1 < N2

C2 if N1 ≥ N2,
(18)

where C1 is the constant defined in the previous section, and C2 is another positive 154

constant independent of δ . 155

Therefore, formulation (17) corresponding to IC2 is optimally preconditioned by 156

S0
2,δ2

and it is better than (16) (corresponding to IC1) for what concerns the compu- 157

tational efficiency. 158

Moreover, when the viscosity vanishes (see Table 1), the performance of the SP0 159

approach (17) does not downgrade, as the number of PBi-CGStab iterations keeps 160

bounded: three or four iterations are enough to satisfy the stopping test independently 161

of both viscosity and discretization parameters. 162
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Fig. 2. Zoom on the numerical solution for ν = 10−3 and: (9) (left), (4) (right) with N1 = 8
and N2 = 24. The elliptic solution u2 is in front, while the hyperbolic one u1 is behind
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On the contrary, the number of PBi-CGStab iterations required by SP approach 163

(16) noticeably grows up when ν→ 0 and behaves like (N2−N1 +1)3/4 when N1 < 164

N2, in agreement with (18). 165

The large number of PBi-CGStab iterations required by SP is due to the presence 166

of instabilities across Γ in which develop when advection dominates and the larger 167

N2−N1 is, the more they are pronounced. 168

We verified that the same instability occurs when mortar methods are applied 169

to solve the pure elliptic-elliptic couplings with dominated advection and interface 170

condition ν ∂u1
∂nΓ
−b ·nΓ u1 = ν ∂u2

∂nΓ
−b ·nΓ u2 on the whole interface Γ . Indeed, the 171

local Steklov-Poincaré operators associated to the latter interface condition behaves 172

like operator S2 introduced in (5), and they can lose the coercivity when ‖b‖L∞(Ω) 173

is large. This is the subject of a work in progress. (See also [1].) 174

In conclusion, the heterogeneous approach (1) with interface conditions IC2 and 175

non-conforming mortar coupling turns out to be the most efficient and accurate one 176

for vanishing viscosity and it is also a valid way to overcome instabilities arising 177

from the mortar discretization of elliptic equations with dominated advection. 178

In Fig. 2 the heterogeneous solutions obtained by solving both (17) and (16) with 179

ν = 10−4, N1 = 8 and N2 = 24 are shown. The elliptic solution u2 provided by (16) 180

(Fig. 2, right) exhibits non-trivial oscillations, while that provided by (17) (Fig. 2, 181

left) does not. 182

Table 1. PBi-CGStab iterations to solve systems SP0 (17) and SP (16) with P = S0
2,δ2

versus
the viscosity. At left, N1 = 8, at right, N1 = 20, N2 = 24. 4× 4 equal spectral elements are
taken in each Ωk. N2 = 64 along x-direction in the elements next to the layer

t1ν 10−1 10−2 10−3 10−4

t1SP0 3 4 3 3
t1SP 10 45 262 587

ν 10−1 10−2 10−3 10−4

SP0 3 3 3 4
SP 7 17 35 86
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