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Summary. In this paper, we consider the elastic deformation of arterial walls as occurring, 12

e.g., in the process of a balloon angioplasty, a common treatment in the case of atherosclero- 13

sis. Soft biological tissue is an almost incompressible material. To account for this property 14

in finite element simulations commonly used free energy functions contain terms penalizing 15

volumetric changes. The incorporation of such penalty terms can, unfortunately, spoil the con- 16

vergence of the nonlinear iteration scheme, i.e., of Newton’s method, as well as of iterative 17

solvers applied for the solution of the linearized systems of equations. We show that the aug- 18

mented Lagrange method can improve the convergence of the linear and nonlinear iteration 19

schemes while, at the same time, implementing a guaranteed bound for the volumetric change. 20

Our finite element model of an atherosclerotic arterial segment, see Fig. 1, is constructed from 21

intravascular ultrasound images; for details see [4]. 22

Fig. 1. Finite element model of an atherosclerotic arterial segment 1.3M unknowns
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1 Nonlinear Model and Algorithm 23

Biological tissues, such as arteries, are fiber enforced materials composed of an 24

almost incompressible matrix substance with embedded collagen fibers. The arrange- 25

ment of the fibers in arterial walls is characterized by two preferred directions heli- 26

cally wound along the artery. The material behavior of the collagen fiber bundles 27

is represented by the superposition of two transversely isotropic models; see [12]. 28

Thus, the strain energies are given by 29

ψ = ψ iso(C)+ψ ti,(1)(C,M(1))+ψ ti,(2)(C,M(2)) . (1)

Here, F :=∇ϕ is the deformation gradient, C := FT F the right Cauchy-Green-tensor, 30

and M(a) := a(a)⊗ a(a), a = 1,2 are the structural tensors characterizing the fiber 31

directions. There exist different possibilities to model the mechanical response of soft 32

biological tissue; see, e.g., [2, 12]. We are interested in polyconvex energy functions. 33

For the construction of anisotropic, polyconvex functions, see, e.g., [18]. Here, we 34

use the model due to [12], which was denoted model ψB in [3], 35

ψ = c1

(
I1I−1/3

3 −3
)
+

2

∑
a=1

k1

2k2

{
exp

(
k2

〈
J(a)4 I−1/3

3 −1
〉2
)
−1

}

+ ε1

(
Iε2
3 + I−ε2

3 −2
)α

,

with the invariants I1 = trC, I2 = tr[Cof(C)], I3 = detC,J(a)4 = tr[CM(a)], J(a)5 = 36

tr[C2M(a)]. Here, 〈•〉 denote the Macauly brackets, 〈•〉 = (| • |+ •)/2. The penalty 37

term ε1

(
Iε2
3 + I−ε2

3 −2
)α

models the incompressibility. 38

We adjust our parameters to experimental results in [11]; for details, see [5]. The 39

adjustment results in the parameters c1 = 7.17 [kPa],k1 = 3.69e− 3 [kPa],k2 = 51.2 40

for the adventitia and c1 = 9.23 [kPa],k1 = 193 [kPa],k2 = 2.627e3 for the media. 41

In the augmented Lagrange approach [10, 20] a Lagrange multiplier is introduced 42

on each finite element and μT (detF−1) is added to the energy ψ . Here, we mean by 43

detF the vector of element-wise determinants of F. The Lagrange multiplier will be 44

computed iteratively by an Uzawa-like iteration μk+1 = μk +ξk(detF−1), where in 45

our computations in Sect. 3 the series ξk will be chosen as a constant ξk = ξ = 499.0. 46

We have chosen ξ by hand from the set {99,499,999,1999,9999}. 47

Our parameter fit is performed assuming incompressibility of the material. When 48

using the penalty approach we have to choose sufficiently large penalty parameters. 49

Here, our penalty parameters are ε1 = 70.0 [kPa],ε2 = 8.5,α = 1 for the adventitia 50

and ε1 = 360.0 [kPa],ε2 = 9.0,α = 1 for the media. Also in the augmented Lagrange 51

approach we need to choose our penalty parameters but here the penalty may be 52

relaxed significantly, i.e., we choose ε1 = 10.0 [kPa],ε2 = 4.0,α = 1 for adventitia 53

and media. The relaxation becomes evident when the penalty function is plotted for 54

the different sets of parameters. A sufficiently accurate stopping criterion has to be 55

chosen for the augmented Lagrange loop; here we chose a tolerance of |det(F)−1| ≤ 56

0.01 on each element. 57
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In our discretization, we have to avoid locking effects. We therefore replace 58

point-wise penalization by the penalization of the average volumetric change on 59

every finite element. This is accomplished, as in [3, 16], by applying a three-field 60

formulation, known as the F̄-approach; see [19]. We use 10-noded tetrahedral ele- 61

ments for the displacement. 62

In our nonlinear scheme we solve a sequence of linear problems obtained from 63

Newton’s method, see, e.g., Fig. 2. This is also referred to as (pseudo) time stepping 64

or load stepping. To obtain a fair comparison, we have chosen an automatic time step- 65

ping strategy. For the penalty approach we increase Δ t when the number of Newton 66

iterations is smaller than 6 and decrease Δ t when it is larger than 9. This choice pro- 67

duced the best results. The simultaneous Augmented Lagrange approach, where the 68

iteration for the Lagrange multiplier simultaneously to the Newton correction, can 69

be viewed as an inexact Newton method. Thus, a quadratic convergence cannot be 70

expected. We therefore have chosen the bounds for the auto time stepping as 18 and 71

36. For all approaches the maximal time step size was bounded by Δ tmax = 0.4. 72

Fig. 2. Penalty for the incompressibility

2 FETI-DP Method 73

We briefly introduce the well-known FETI-DP method. For a more detailed intro- 74

duction, see, e.g., [13, 16, 17, 21]. For algorithms of the Finite Element Tearing andAQ2 75

Interconnecting-type (FETI); see [6–9]. Using FETI-DP methods linear systems with 76

billions of unknowns have been solved, e.g., in [14, 16] on large parallel machines 77

(Fig. 3).AQ3 78

We decompose the domain Ω into N nonoverlapping subdomains Ωi. For all sub- 79

domains Ωi, we assemble the local stiffness matrices K(i) and local load vectors f(i), 80

i = 1, . . . ,N, 81

82
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Fig. 3. Simultaneous augmented Lagrange for the incompressibility [10, 20]

K =

⎡
⎢⎣

K(1)

. . .
K(N)

⎤
⎥⎦ , u =

⎡
⎢⎣

u(1)

...
u(N)

⎤
⎥⎦ , f =

⎡
⎢⎣

f(1)
...

f(N)

⎤
⎥⎦ . 83

The interface is Γ = ∪N
i=1∂Ωi \ ∂Ω . The discrete problem can be formulated as 84

minimization problem with the interface continuity constraint Bu = 0, where B = 85

[B(1), . . . ,B(N)] with entries from 0,1,−1. By introducing Lagrange multipliers λ to 86

enforce the continuity along the subdomain interface we obtain the problem: Find 87

(u, λ), such that 88

Ku + BT λ = f
Bu = 0 .

89

This problem can be solved by eliminating the displacement variables u and solving 90

the resulting Schur complement system by conjugate gradients. 91

In FETI-DP methods some continuity constraints are enforced on primal dis- 92

placement variables ũΠ throughout iterations to enforce invertibility of the local 93

problems. This yields a saddle point problem of the form 94

K̃ũ + BT λ = f̃
Bũ = 0 ,

95

where the matrix K̃ and right hand side f̃ are partially assembled in the primal vari- 96

ables, i.e., 97



Page 393

UN
CO

RR
EC

TE
D

PR
O
O
F

Simultaneous Augmented Lagrange in Biomechanics

K̃ =

⎡
⎢⎢⎢⎢⎢⎣

K(1)
BB K̃

(1)T
ΠB

. . .
...

K(N)
BB K̃

(N)T
ΠB

K̃
(1)
ΠB · · · K̃

(N)
ΠB K̃ΠΠ

⎤
⎥⎥⎥⎥⎥⎦
, f̃ =

⎡
⎢⎢⎢⎢⎣

f(1)B
...

f(N)
B
f̃Π

⎤
⎥⎥⎥⎥⎦ . 98

The coupling also provides the coarse problem for the method. Reducing the system 99

of equations to an equation in λ , it remains to solve iteratively 100

M−1
D Ffetiλ = M−1

D d , 101

where Ffeti = BK̃
−1

BT , and M−1
D = BDRT

Γ SRΓ BT
D is the Dirichlet preconditioner. 102

Here, S is the Schur complement obtained by eliminating the interior variables in 103

every subdomain, i.e., S =

⎡
⎢⎣

S(1)

. . .
S(N)

⎤
⎥⎦ . The operator RΓ is a restriction matrix, 104

consisting of zeros and ones, that, when applied to a vector ũ, removes the interior 105

variables from ũ. The matrices BD are scaled variants of the jump operator B where, 106

in the simplest case, the contribution from and to each interface node is scaled by 107

the inverse of the multiplicity of the node. We define the multiplicity of a node as 108

the number of subdomains it belongs to. For heterogeneous problems a more elab- 109

orate scaling, using an appropriate scaling factor, defined by the coefficients ρi, is 110

necessary; see, e.g., [17, p. 1532, Formula (4.3)] and [15, p. 1403, Formula (6)]. 111

3 Numerical Results 112

A pressure of 200 mmHg is applied to the inside of the artery, see Fig. 1. The 113

FETI-DP iteration is stopped when the absolute residual is reduced to 5× 10−9; 114

we have 224 subdomains. The total cost can be estimated by multiplying the number 115

of Newton steps by the corresponding average number of (inner) FETI-DP Krylov 116

iterations, see Tables 1 and 2. 117

Our results show that the use of the augmented Lagrange method can signifi- 118

cantly improve the properties of the linearized systems occurring in the nonlinear 119

solution scheme. The convergence of the nonlinear scheme is also improved, i.e., in 120

our nonlinear scheme larger pseudo time steps Δ t can be chosen. Of course, an addi- 121

tional iteration process for the Lagrange multiplier is introduced. Here, this iteration 122

process is carried out simultaneously with the Newton iteration. 123

The results in Tables 1 and 2 show that the additional cost for the augmented 124

Lagrange iteration is more than amortized by the faster convergence of the nonlin- 125

ear scheme and the linear iterative solver. Moreover, in the augmented Lagrange 126

approach the volumetric change is exactly controlled during the iteration process, 127

i.e., we have satisfied element-wise the condition |det(F)−1| ≤ 0.01. In the penalty 128

approach the volumetric change produced by the chosen penalty parameters is only 129
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Table 1. Newton iteration for the penalty formulation. Pseudo-time t, number of Newton steps,
average number of Krylov iterations per Newton step.

t Newton steps ∅ Krylov its

0.010 9 172.2
0.020 5 173.0
0.036 5 175.8
0.061 5 179.4
0.101 6 189.3
0.141 5 187.0
0.204 6 201.8
0.267 5 195.6
0.367 7 208.0
0.467 7 204.1
0.567 5 207.4
0.725 6 217.8
0.884 5 225.4
1.135 6 242.0
1.386 6 253.8
1.637 7 266.3
1.889 5 279.4
2.000 4 285.8

Σ 104 Total ∅ 213.3

Table 2. Simultaneous Newton and augmented Lagrange (AL) iteration. Pseudo-time t, num-
ber of Newton-AL steps, average number of Krylov iterations per Newton-AL step.

t Newton-AL steps ∅ Krylov its

0.010 9 99.3
0.026 4 100.5
0.051 5 101.4
0.091 6 101.3
0.154 6 102.8
0.254 7 104.3
0.412 11 105.4
0.664 14 109.4
1.062 14 119.0
1.462 16 139.7
1.862 17 167.0
2.000 15 180.8

Σ 124 Total ∅ 138.6
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known ex-post. In our example the solution using the penalty approach only satisfies 130

|det(F)−1| ≤ 0.021. 131

In the results in Table 2, we see that the number of Newton-AL-iterations 132

increases during the simulation. This is due to the fact that in the beginning of the 133

simulation only a very small number of finite elements violate the element-wise con- 134

dition |det(F)−1| ≤ 0.01. 135

The results in, both, Tables 1 and 2 also show an increase of the FETI-DP itera- 136

tions during the simulation. We believe that this may in part be due to an increasing 137

influence of the incompressibility constraint during the simulation but also result 138

from the exponential stiffening behavior of the fibers. In [1], we have observed that 139

the anisotropies introduced to the material wall models by the terms modeling the 140

fibers can have a visible impact on the convergence of the nonlinear iteration scheme 141

as well as the convergence of the iterative linear solver. Ideas described in [16] may 142

improve the convergence of domain decomposition solvers for such anisotropic prob- 143

lems. 144
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