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1 Introduction 13

In this paper, we present a new non-overlapping domain decomposition algorithm 14

for the Helmholtz equation. We are particularly interested in the method introduced 15

by P.-L. Lions [6] for the Laplace equation and extended to the Helmholtz equa- 16

tion by B. Després [3]. However, this latest approach provides slow convergence 17

of the iterative method due to the choice of the transmission conditions. Thus, in 18

order to improve the convergence, several methods were developed [4, 5, 9, 10]. 19

The main idea in [5, 9] consists in computing a more accurate approximation of the 20

Dirichlet-to-Neuman (DtN) operator than the one proposed in [3] by using partic- 21

ular local transmission conditions. We propose in this work a different approach to 22

approximate the DtN map. We mainly use Padé approximants to suitably localize the 23

nonlocal representation of the DtN operator [8, 11]. This results in an algorithm with 24

quasi-optimal convergence properties. 25

2 Model Problem and Non-overlapping Domain Decomposition 26

Method 27

For the sake of simplicity, we limit ourselves to the evaluation of the two-dimensional 28

time-harmonic scattering wave by an obstacle denoted by K. The three-dimensional 29

case is treated similarly without adding any difficulty. We consider the model prob- 30

lem given by the system 31
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Fig. 1. Example of 2D non-overlapping domain decomposition method

⎧⎪⎪⎨
⎪⎪⎩

Δu+ k2u = 0 in R
2\K,

u = f on Γ = ∂K,

lim
|x|→∞

|x|1/2(∂|x|u− iku) = 0,
(1)

composed of the Helmholtz equation, the Dirichlet condition on Γ (TE polariza- 32

tion in electromagnetics) where f = −eikα ·x describes the incident plane wave with 33

|α| = 1 and k is the wavenumber, and the Sommerfeld radiation condition. To 34

solve (1), we combine the absorbing boundary condition method [1, 2] with non- 35

overlapping domain decomposition methods. The absorbing boundary conditions 36

method consists of truncating the computational domain using an artificial interface 37

Σ , and reducing the system (1) to the following one 38

⎧⎪⎨
⎪⎩

Δu+ k2u = 0 in Ω ,

u = f on Γ ,

∂nu+Bu = 0 on Σ ,

(2)

where Ω is the bounded domain enclosed by Σ and Γ , B indicates the approximation 39

of the Dirichlet-to-Neuman (DtN) operator, and n is the outward normal to Σ . We are 40

interested in the domain decomposition method introduced in [3, 6]. The first step of 41

this approach consists in splitting Ω into several subdomains Ωi, i = 1, . . . ,N, such 42

that 43

• Ω =
⋃N

i=1 Ω i (i = 1, . . . ,N), 44

• Ωi∩Ω j = /0, if i �= j, (i, j = 1, . . . ,N), 45

• ∂Ωi∩∂Ω j = Σ i j = Σ ji (i, j = 1, . . . ,N) is the artificial interface (see Fig. 1) sep- 46

arating Ωi from Ω j as long as its interior Σi j is not empty. 47

Then, applying the Lions-Després algorithm, the solution of the initial problem (1) 48

is reduced to an iterative procedure, where each iteration is performed by solving the 49

local problems 50
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⎧⎪⎪⎨
⎪⎪⎩

Δu(n+1)
i + k2u(n+1)

i = 0 in Ωi,

u(n+1)
i = fi on Γi,

∂niu
(n+1)
i +Bu(n+1)

i = 0 on Σi

(3a)

∂niu
(n+1)
i +S u(n+1)

i = g(n)i j on Σi j, (3b)

and forming the quantities to be transmitted through the interfaces 51

g(n+1)
i j =−∂n j u

(n+1)
j +S u(n+1)

j =−g(n)i j + 2S u(n+1)
j on Σi j , (4)

where ui = u|Ωi , ni (resp. n j) is the outward unit normal of the boundary of Ωi 52

(resp. Ω j), i = 1, . . . ,N, j = 1, . . . ,N , Γi = ∂Ωi ∩Γ and Σi = ∂Ωi ∩Σ . Note that 53

the boundary condition on Γi (resp. Σi) does not take place if the interior of ∂Ωi∩Γ 54

(resp. ∂Ωi∩Σ ) is the empty set. 55

3 New Transmission Conditions 56

It is well established that the convergence of the domain decomposition algorithms 57

depends on the choice of the transmission operator S . In the original method pro- 58

posed by B. Després [3], the usual approximation of the DtN operator S u = −ıku 59

is used. The resulting algorithm does not treat efficiently the evanescent modes of 60

the iteration operator which impairs the iterative method [9]. In order to improve the 61

convergence, two techniques, based on the modification of the operator S , were 62

proposed. First, the optimized Schwarz method introduced by Gander et al. [5]. 63

It consists of using local second-order approximations of the DtN operator S u = 64

δu + γ∂ 2
s u, where ∂s is the tangential derivative operator, and the coefficients δ 65

and γ are optimized using the rate of convergence obtained in the case of the 66

half-plane. The second method, called the “evanescent modes damping algorithm” 67

(EMDA), was introduced by Boubendir et al. [9, 10]. In this case, S is chosen as 68

S u = −ıku+X u where X is a self-adjoint positive operator. We only consider 69

here the usual case where X is a real-valued positive coefficient. In this paper we 70

propose a new “square-root” transmission operator [7, 8, 11] that takes the following 71

form: 72

S u =−ıkOp

(√
1− ξ 2

k2
ε

)
u, (5)

where 73

kε = k+ ıε (6)

is a complexified wavenumber, and the notation
√

z designates the principal deter- 74

mination of the square-root of a complex number z with branch-cut along the nega- 75

tive real axis. This choice of the square-root operator is motivated by developments 76

of absorbing boundary conditions (ABC) for scattering problems [1, 2]. Generally 77

speaking, the usual techniques to develop absorbing boundary conditions consists 78
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mainly in using Taylor expansions to approximate the symbol of the DtN operator. 79

However, these approximations prevent the modelling of the three parts describing 80

the wave (propagating, evanescent and transition) at the same time, which affects, in 81

return, the final accuracy of the solution. This problem can be solved by high-order 82

local ABC introduced in [7, 8], which uses (5) to model all the scattering modes: 83

propagating, evanescent as well as (in an approximate way) grazing. The localiza- 84

tion is performed with complex Padé approximants, and the coefficient ε in (6) can 85

then be chosen to minimize spurious reflections at the boundary. In the context of 86

domain decomposition methods, this optimization of ε improves the spectrum of the 87

iteration operator on these grazing modes. As it is shown in [8], the optimal value of 88

this parameter is given by ε = 0.4k1/3H 2/3, where H is the mean curvature on the 89

interface. 90

4 Localization of the Square-Root Operator Using Padé 91

Approximants 92

Because the square-root operator (5) is nonlocal, its use in the context of finite 93

element method is ineffective since it would lead to consider full matrices for the 94

transmission boundaries. A localization process of this operator can be efficiently 95

done by using partial differential (local) operators and obtain sparse matrices. This 96

is performed [7, 8, 11] in rotating branch-cut approximation of the square-root and 97

then applying complex Padé approximants of order Np, 98

√
1− ξ 2

k2
ε

u≈ Rα
Np
(−ξ 2

k2
ε
)u

=C0u+
Np

∑
�=1

A�(
−ξ 2

k2
ε

)(1+B�(
−ξ 2

k2
ε

))−1u,

(7)

which correspond to the complex Padé approximation 99

√
1+ z≈ Rα

Np
(z) =C0 +

Np

∑
�=1

A�z
1+B�z

, (8)

and where the complex coefficients C0, A� and B� are given by 100

C0 = eı α
2 RNp(e

−ıα −1),A� =
e−

ıα
2 a�

(1+ b�(e−ıα −1))2 ,B� =
e−ıαb�

1+ b�(e−ıα −1)
.

Here, α is the angle of rotation, (a�,b�), � = 1, . . . ,Np, are the standard real Padé 101

coefficients 102

a� =
2

2Np + 1
sin2(

�π
2Np + 1

) , b� = cos2(
�π

2Np + 1
), (9)

and RNp is the real Padé approximant of order Np 103
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√
1+ z≈ RNp(z) = 1+

Np

∑
�=1

a�z
1+ b�z

. (10)

For a variational representation, the approximation of the Padé-localized square- 104

root transmission operators is realized by using auxiliary coupled functions [7, 11] 105

S u =−ık(C0u+
Np

∑
�=1

A�divΣd (
1
k2

ε
∇Σd ϕ�)) on Σd , (11)

where the functions ϕ�, � = 1, ..,Np, are defined on any artificial interface Σd as the 106

solutions of the surface PDEs 107

(1+B�divΣd (
1
k2

ε
∇Σd ))ϕ� = u. (12)

The resulting transmitting condition is a Generalized Impedance Boundary Condi- 108

tion, and is denoted by GIBC(Np,α,ε) for the Padé approximation with Np auxiliary 109

functions, for an angle of rotation α and a damping parameter ε . The lowest-order 110

approximation S = −ıkI (resp. S = −ıku + X u) is denoted by IBC(0) (resp. 111

IBC(X )). 112

5 Numerical Results 113
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Fig. 2. Left: decomposition of the computational domain. Right: iteration number with respect
to the wavenumber k for two densities of discretization nλ
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The numerical tests presented here concern the scattering of a plane wave by 114

a unit sound-soft circular cylinder. We truncate the computational domain using a 115

circle of radius equal to 4, on which the second-order Bayliss-Turkel absorbing con- 116

dition [1] is set (see problem (2)). We perform these numerical tests on partitions 117

of the type displayed in Fig. 2, and we refer to them as “circle-pie”. We use a finite 118

element method with linear (P1) basis functions to approximate the solution in each 119

subdomain. The implementation of this method with Padé approximants is described 120

in [11]. The iterative problem is solved using GMRES and the iterations are stopped 121

when the initial residual has decreased by a factor of 10−6. 122

We begin by testing the iterative method with respect to the wavenumber k. Let 123

us consider the number of subdomains Ndom = 5. Because the interfaces are straight, 124

as depicted on the left picture of Fig. 2, ε cannot be optimized as described in Sect. 3. 125

However, numerical simulations show that ε = k/4 is an appropriate choice for this 126

kind of interfaces. On the right picture of Fig. 2, we represent the behavior of the 127

number of iterations. We choose two densities of discretization points per wave- 128

length nλ . We compare the new algorithm noted GIBC(Np, π/4, ε), where Np is the 129

Padé number and π/4 the angle of rotation, with the EMDA algorithm designated by 130

IBC(k/2). In this latest case, the number of iterations clearly increases with respect 131

to k and nλ . However, for GIBC(Np, π/4, ε), the convergence rate is almost inde- 132

pendent of both the wavenumber and density of discretization points per wavelength. 133

In particular, the convergence for Np = 2 and Np = 8 is similar. This means that the 134

cost of the solution when solving local problems is comparable to the other methods 135

with usual local transmission conditions (see [11] for more details). 136
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Fig. 3. Number of iterations with respect to the density of discretization nλ and the number of
subdomains Ndom
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In Fig. 3, we show the number of iterations with respect to: (i) the density of dis- 137

cretization points per wavelength nλ for two wavenumbers k, and (ii) the number of 138

subdomains Ndom. We can see that for a small Padé number (Np = 2), the conver- 139

gence is almost independent of the mesh size. A larger choice of Np will provide an 140

optimal result. We also see that the number of iterations with respect to the number 141
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of subdomains does not deteriorate with increasing values of Np or k, contrary to 142

IBC(k/2). 143

6 Conclusion 144

We designed in this paper a new non-overlapping domain decomposition algorithm 145

for the Helmholtz equation with quasi-optimal convergence properties. It is based on 146

a suitable approach which consists in using Padé approximants to approximate the 147

DtN operator. The analysis of this new approach can be found in [11], as well as 148

several numerical tests including the three-dimensional case. 149
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