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1 Introduction 10

We present an Algebraic Multigrid (AMG) method for graph Laplacian problems. 11

The coarse graphs are constructed recursively by pair-wise aggregation, or matching 12

as in [3] and we use an Algebraic Multilevel Iterations (AMLI) [1, 6] for the solution 13

phase. 14

The two-level method constructs a splitting of the underlying vector space into 15

two subspaces VS and VP and then corrects the error successively on VS and VP. The 16

coarse space VP is obtained using matching on the underlying graph. Such a two-level 17

method is shown to be uniformly convergent. In the AMLI method (multilevel), m 18

coarse level corrections are applied on each level. For large m, while the conver- 19

gence rate of the method is comparable to that of the two-level method and, hence, 20

uniformly convergent, it is clear that the overall complexity of such method could 21

be too high for large values of m. In our approach, the AMLI convergence rate is 22

estimated solely based on the underlying two-level method, which allows us to show 23

that m = 2 gives a balance between the complexity and the desired convergence rate, 24

thus, resulting in an efficient algorithm. 25

The paper is organized as follows. In Sect. 2 the graph Laplacian problem is de- 26

scribed. In Sect. 3, the graph matching algorithm is introduced and it is indicated 27

that the �2 projection on the coarse space is the key quantity for obtaining the mul- 28

tilevel estimates of the AMLI method. In Sect. 4, an analysis of a specific two-level 29

method is presented and in Sect. 5 its convergence and complexity are estimated. In 30

the following section, numerical results are reported. 31

2 Graph Laplacian Problems 32

Graph Laplacian solvers can be used as preconditioners for various discrete numeri- 33

cal models, e.g., ones arising from discretizations of partial differential equations, 34
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machine learning algorithms, and spectral clustering of images. Consider a con- 35

nected unweighted graph G = (V ,E ) where V and E are the sets of vertices and 36

edges. The graph Laplacian A ∈ IRn×n, where n = |V | (cardinality of V ), corre- 37

sponding to the graph G , can be defined as follows: 38

(Au,v) = ∑
k=(i, j)∈E

(ui−u j)(vi− v j).

The matrix A is symmetric and positive semi-definite. The null space of A is one 39

dimensional, and its basis is given by {1}, where 1 is a vector whose components are 40

all equal to 1. Our aim here is to solve graph Laplacian problems, or to find u, such 41

that (u,1) = 0 and 42

Au = f ,

for a given f satisfying ( f ,1) = 0. 43

We want to find an AMG method to solve graph Laplacians with simple settings, 44

so that we can estimate the performance of the AMG method, with as few assump- 45

tions introduced as possible. The construction of this AMG method can also help 46

us to derive similar methods for weighted graph Laplacian problems, which come 47

from finite element or finite difference discretizations of elliptic partial differential 48

equations, circuit simulations, and in general, network flow simulations. 49

3 Graph Matching 50

Given a graph G , assume that we can find a set of aggregates M called a matching, 51

where each aggregate contains exactly two vertices, and every vertex of G is con- 52

tained in exactly one aggregate. For a certain aggregate that contains vertices i and 53

j, we merge the two vertices, and the newly formed vertex, named k, is considered 54

connected to the vertex l if and only if l is connected to i or j on graph G . By merg- 55

ing vertices in each aggregate, a reduced graph of the graph G is formed. Applying 56

such a matching algorithm recursively will result in a sequence of graphs. We then 57

construct a solver for the graph Laplacian of G based on the sequence of reduced 58

graphs. 59

In the matching M , we consider the k-th aggregate as a graph Gk = (Vk,Ek). Let 60

Q be the �2-orthogonal projection on the coarse space, which consists of vectors that 61

are piecewise constant on each set Vk. An alternative definition of Q is as follows. 62

(Qu)i =
1
|Vk| ∑

j∈Vk

u j, i ∈ Vk.

Classical AMG theory suggests that the coarse space should cover, or approx- 63

imate algebraically smooth error components. Detailed explanations can be found, 64

e.g., in the appendix of [5]. In the following section, we will compute how well piece- 65

wise constant vectors can approximate smooth vectors and will discuss the properties 66

of two-level and multilevel methods using the subspace(s) associated with the pro- 67

jection Q. 68
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4 A Two-Level Method 69

Define matrices P and S for a given matching M , such that 70

P · ek = ei + e j, S · ek = ei− e j, (i, j) ∈ Vk,

where ei and e j are Euclidean basis vectors. Since a prerequisite for designing an 71

efficient AMLI method is an efficient two-level method, in this section we focus on 72

two-level methods and their convergence rates. Given an initial guess u0, a typical 73

two-level algorithm which takes as input uk and returns the next iterate uk+1 is as 74

follows: 75

1. v = uk + SR−1ST ( f −Auk),
2. w = v+PA−1

c PT ( f −Av),
3. uk+1 = w+ SR−T ST ( f −Aw).

76

Here the matrix R is a preconditioner of ST AS, which is the restriction of A on the 77

space range(S) = [range(P)]⊥. The matrix Ac is an approximation of the restriction 78

of A on the coarse space Vc = range(P). In our algorithm, Ac is first defined as the 79

graph Laplacian of the unweighted coarse graph and thus Ac �= PT AP. We then scale 80

Ac such that (vT Acv)/(vT PT APv) ∈ [1,cc]. A proper scaling results in cc = 2 for 81

P that corresponds to an aligned matching and A that is a structured grid of any 82

dimension. The matrix representation of this two-level method, denoted by G, can 83

be deduced via the error propagation matrix given as follows. 84

E = (I−SR−T ST A)(I−PA−1
c PT A)(I−SR−1ST A) = I−G−1A. (1)

We now derive an estimate on the angle between the spaces range(S) and 85

range(P), which in our setting amounts to obtaining a bound on the energy norm 86

of Q, the �2-orthogonal projection onto range(P). Let γ be the C.B.S. constant such 87

that it is the smallest number satisfying (Sw,Pv)A ≤ γ|Sw|A|Pv|A, then (cf. [6, Corol- 88

lary 3.7]): 89

|Q|2A = 1/(1− γ2).

Using [2, Theorem 4.2] we can show that, if the symmetrized smoother R̃ = R+ 90

RT −ST AS is positive definite, and (wT R̃w)/(wT ST ASw) ∈ [1,κs], then 91

vT Gv
vT Av

∈ [1, |Q|2A(κs + cc−1)].

If a two-level method using a certain matching is already given, then both |Q|A 92

and κs can be estimated using the properties of the underlying graph. The norm |Q|A 93

is estimated as follows: 94

uT QAQu = ∑
(i, j)∈E

((Qu)i− (Qu) j)
2 ≤ 2d ∑

(i, j)∈E

(ui−u j)
2 ≤ (2d)uT Au

where d is the maximum degree of the graph. This implies that |Q|2A ≤ 2d. Assuming 95

that the matching M is perfect, we show that the smallest eigenvalue of ST AS is 96

larger or equal to 4, by computing 97
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wT ST ASw≥ ∑
(i, j)∈M

((Sw)i− (Sw) j)
2 = ∑

(i, j)∈M

4(Sw)2
i = 4‖w‖2

�2
.

According to the Gershgorin theorem, the largest eigenvalue of ST AS is bounded 98

by a function of d and for a simple smoother R, such as Richardson iteration, κs is 99

also bounded by a function of d. From the above results (i.e, the stability estimate 100

of Q in the A-seminorm and the lower bound on the smallest eigenvalue of ST AS) it 101

follows that the two-level method is uniformly convergent with respect to the size of 102

the matrix A. Based on the two-level convergence estimate, AMLI cycles with low 103

complexity and predictable convergence is then constructed. 104

5 Algebraic Multilevel Iterations 105

An estimate of the two-level convergence rate does not automatically carry over to an 106

estimate of the convergence of a multilevel V-cycle, and in general, for piece-wise 107

constant coarse spaces, it can be shown that the convergence rate degrades expo- 108

nentially with respect to the number of levels. A remedy for this issue is to use more 109

complicated cycles such as AMLI, and keep a balance between complexity of a cycle 110

and its convergence rate so that the resulting algorithm is optimal or nearly optimal. 111

We describe an AMLI method by first rewriting the two-level preconditioner G, 112

as well as Ĝ which is G under the hierarchical basis (S,P), in block form: 113

Ĝ−1 = L̂−T
(
(R+RT −ST AS)−1 0

0 A−1
c

)
L̂−1,

G = (S,P)−1Ĝ(S,P)−T ,

where 114

L̂ =

(
I 0

PT ASR−1 I

)
.

Then define an AMLI preconditioner B as follows. 115

B̂−1 = L̂−T
(
(R+RT −ST AS)−1 0

0 B−1
c q(AcB−1

c )

)
L̂−1,

B−1 = (S,P)T B̂−1(S,P).

Here Ac is the scaled unweighted graph Laplacian of the coarse graph and Bc is a 116

preconditioner of Ac, and q(t) is a polynomial. When q(t) = 1, the action B̂−1 stands 117

for a V-cycle with an inexact solver B−1
c on the coarse level. In the case of a W-cycle, 118

we have q(t) = 2− t. 119

The following lemma shows how well the AMLI preconditioner B approximates 120

the two-level preconditioner G. 121

Lemma 1. If λ1 ≤ λ (B−1
c Ac)≤ λ2 and tq(t)> 0 for t ∈ [λ1,λ2], then 122

min(1, min
λ1≤t≤λ2

1
tq(t)

)≤ vT G−1v
vT B−1v

≤max(1, max
λ1≤t≤λ2

1
tq(t)

).
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This lemma suggests that, the AMLI method is spectrally equivalent to a two- 123

level method, given that the coarse-level preconditioner is spectrally equivalent to 124

the coarser-level matrix. The upper and lower bounds in the lemma above are related 125

to estimates on |tq(t)| for t in a given interval. As shown in [1, 6], using higher 126

order polynomials q(t), the matrix B−1 can approximate G−1 arbitrarily well and 127

thus we will have a method with excellent convergence rate. However, a higher order 128

polynomial q(t) leads to a much more expensive computation of the coarser level 129

correction, and the resulting multilevel methods can have a very high complexity 130

and one should be careful in the choice of the polynomial degree. 131

Assume that a multilevel hierarchy is formed by a recursive application of the 132

matching algorithm. Denote the graph Laplacians on each level, and the correspond- 133

ing two-level preconditioners by Ak and Gk. Following the ordering of levels in [1, 6] 134

we set A = A0 and denote by AJ the coarsest matrix. Define a sequence of solvers as 135

B̂−1
J = Â†

J = (SJ,PJ)
−T A†

J(SJ,PJ)
−1,

B−1
k = (Sk,Pk)

T B̂−1
k (Sk,Pk), k = 0, . . . ,J,

B̂−1
k = L̂−T

k

(
(Rk +RT

k −ST
k AkSk)

−1 0
0 B−1

k+1q(Ak+1B−1
k+1)

)
L−1

k , k = 0 . . .J−1.

Then, a multilevel proof of convergence follows. 136

Lemma 2. Assume that there is a constant cg, 1 ≤ cg < 4, such that the following 137

relation holds. 138

vT Âkv≤ vT Ĝkv≤ cgvT Âkv, ∀v and k = 0, . . . ,J.

Then there exists a linear function q(t), such that 139

2√
cg
−1≤ vT B−1

k v

vT A−1
k v
≤ 1, ∀v and k = 0, . . . ,J.

Here q(t) is a scaled and shifted Chebyshev type polynomial (see [1]). 140

This lemma shows that, if cg is strictly less than 4, then the action B−1
0 is an 141

uniformly convergent AMLI cycle with O(n logn) complexity. Even if cg = 4 on all 142

levels, one may prove that the condition number of B−1
J AJ for the case of second 143

order q(t) (similar to a W-cycle) grows linearly with respect to the number of lev- 144

els J = logn. This results in a convergence factor 1− 1/ logn at a complexity of 145

O(n logn) for each cycle. 146

The two-level method we suggest is based on graph matching, thus cg≤ |Q|2A(κs+ 147

cc− 1). In a simple case where the graph G is a two-dimensional uniform grid, an 148

aligned regular matching yields |Q|2A ≤ 2, κs = 1+ε for arbitrary small ε , and cc≤ 2. 149

This yields cg ≤ 4 and thus the W-cycle AMLI preconditioner will result in 150

a nearly optimal order method (cf. Lemma 2 and the discussion below). For un- 151

structured or higher dimensional grids, numerical experiments indicate that random 152

matching may still result in two-level methods for which cg ≤ 4. 153
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6 Numerical Results 154

We use the matching based AMLI method to solve a family of unweighted graph 155

Laplacians, corresponding to graphs that represent structured grids or unstructured 156

triangulations. 157

Structured grids. In the structured grid case on a rectangular domain, we match 158

in a fixed direction. After several levels of matching the graph corresponding to the 159

coarsest grid is a line. For the test on L-shaped domain, we still use matching in a 160

fixed direction until a part of the coarsest graph becomes a tree. In such case, the 161

unknowns can be ordered so that the fill-in during LU factorization on the coarsest 162

grid is small. 163

A similar strategy can be used for graph Laplacians corresponding to three- 164

dimensional structured grids. The matching procedure is applied only in two fixed 165

directions. 166

Convergence analysis indicates that, choosing as a smoother R−1 = (ST AS)−1
167

guarantees the bound cg ≤ 4, for a matching based two-level method on structured 168

grids. In the numerical experiments, we instead use a Gauss-Seidel smoother for all 169

structured grid problems. Using such a smoother retains a convergence rate ∼(1− 170

1/ logn) and O(n logn) computational complexity. 171

Unstructured grids. Each of the unstructured grids in our tests are constructed 172

by first perturbing the coordinates of vertices of a structured grid, followed by De- 173

launay triangulation of the resulting set of vertices. For unstructured grids, we use 174

a random matching algorithm. Numerical results show that the maximum degree of 175

the coarser graphs grow only during the first few coarsening steps. Hence, smoothers 176

such as Gauss-Seidel can approximate well (ST
k AkSk)

−1 on all levels and the ap- 177

plication of such a smoother has a complexity proportional to the number of de- 178

grees of freedom (DOF) on level k. We use the CG method to perform the action 179

of (ST
k AkSk)

−1 on a vector. Such approach is practical since ST AS is equally well 180

conditioned on all levels. 181

Instead of using the same AMLI polynomial q(t) on all levels, we determine the 182

polynomials qk(t) on each level recursively, starting from the second coarsest level. 183

After constructing a multilevel hierarchy, we use 6 AMLI two level cycles (level 184

(J− 1) and level J) and a Lanczos algorithm to estimate the condition number of 185

B−1
J−1AJ−1. We apply this procedure recursively (and with 6 AMLI multilevel cycles 186

from level (k+ 1) to J) to estimate the condition number of B−1
k Ak on level k, for 187

k = 1, . . . ,J− 2. When all polynomials are determined, they are used in the AMLI 188

cycle during the solving phase. 189

Numerical tests. We use the AMLI cycle as a preconditioner of Conjugate Gra- 190

dient (CG) method. We stop the iterations when the relative residual becomes smaller 191

than 10−10. The results are summarized in Table 1. The number of CG iterations is 192

denoted by M, and the average convergence rate of the last five iterations is denoted 193

by ra. The CG coefficients are also used to estimate the condition number κ(B−1
0 A0), 194

as suggested in [4]. The operator and grid complexities are less than 2 in all the 195

examples presented below. 196
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(a) 2D unit square

DOF κ ra M
2562 18.4 0.55 32
5122 24.8 0.61 36

10242 32.9 0.69 40

(b) 3D unit cube

DOF κ ra M
323 7.8 0.36 21
643 11.4 0.45 25

1283 19.2 0.51 29

(c) 2D L-Shaped

DOF κ ra M
(3/4) ·2562 17.8 0.56 33
(3/4) ·5122 23.9 0.64 36
(3/4) ·10242 31.7 0.69 38

(d) 3D Fichera

DOF κ ra M
(7/8) ·323 7.5 0.40 22
(7/8) ·643 11.1 0.48 25

(7/8) ·1283 15.8 0.55 29

(e) 2D unit square (ug)

DOF κ ra M
2562 31.4 0.58 35
5122 36.7 0.63 39

10242 42.0 0.58 41

(f) 3D unit cube (ug)

DOF κ ra M
323 29.5 0.51 35
643 37.6 0.68 46

1283 48.3 0.72 52

Table 1. Results for structured grids on square, cubic, L-shaped and Fichera domain, and for
unstructured grids (ug) on square and cubic domain. Here, κ is an estimate (from CG) of
κ(B−1

0 A0).

Note that for the 2D and 3D unstructured grid problems, the number of levels 197

for a given unstructured grid is the same as that of a structured grid with the same 198

degrees of freedom. We observe a logarithmic growth of the condition numbers with 199

respect to the size of the grids, and fast convergence rates of the preconditioned CG 200

method in all cases. 201

7 Conclusions 202

We present an AMLI (AMG) method based on graph matching with a nearly optimal 203

convergence rate and computational complexity. We have also presented numerical 204

tests which confirming our estimates. Our ongoing research is on extending the es- 205

timates to general aggregation algorithms and aggregates configurations and we are 206

also investigating improvements of the AMLI method components. 207
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