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1 Introduction 11

Let Ω ⊂ R
2 be a bounded polygonal domain, V = {v ∈ H2(Ω) : ∂v/∂n = 0 on 12

∂Ω} and f ∈ L2(Ω). In this paper we consider multigrid methods for the following 13

biharmonic problem: Find u ∈V such that 14

∫
Ω

∇2u : ∇2vdx =
∫

Ω
f vdx ∀v ∈V, (1)

where ∇2w : ∇2v = ∑2
i, j=1 wxix j vxix j is the inner product of the Hessian matrices of w 15

and v. Under the (assumed) compatibility condition, 16

∫
Ω

f dx = 0, (2)

the biharmonic problem (1) is solvable and the solution is unique up to an additive 17

constant. Furthermore we have an elliptic regularity estimate 18

‖û‖H2+α (Ω) ≤C‖ f‖L2(Ω) (3)

for the solution û of (1) that satisfies
∫

Ω ûdx = 0. Note that, unlike the biharmonic 19

problem with the boundary conditions of clamped plates, the index of elliptic regu- 20

larity α in (3), which is determined by the angles of Ω , can be close to 0 even if Ω 21

is convex (cf. [2]). 22

The essential boundary condition ∂u/∂n = 0 and the natural boundary condition 23

∂ (Δu)/∂n = 0 satisfied by the solution u of (1) appear in the Cahn-Hilliard model 24

for phase separation phenomena (cf. [8]). In particular, the boundary value problem 25

(1) appears when the Cahn-Hilliard equation is discretized in time by an implicit 26

method and the resulting nonlinear fourth order elliptic boundary value problem is 27

solved by an Newton iteration. 28
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We will describe a C0 interior penalty method for (1) in Sect. 2 and introduce in 29

Sect. 3 multigrid methods that are based on a new smoother. The convergence prop- 30

erties of the multigrid methods are briefly discussed in Sect. 4, followed by numerical 31

results in Sect. 5. 32

2 A Quadratic C0 Interior Penalty Method 33

C0 interior penalty methods (cf. [6, 9]) are discontinuous Galerkin methods for fourth 34

order problems. Let Th be a simplicial triangulation of Ω , Vh⊂H1(Ω) be the associ- 35

ated P2 Lagrange finite element space (cf. [5]), and V̂h be the subspace of Vh consist- 36

ing of functions with zero mean, i.e., v ∈Vh belongs to V̂h if and only if
∫

Ω vdx = 0. 37

The quadratic C0 interior penalty method for (1) is to find ûh ∈ V̂h such that 38

ah(ûh,v) =
∫

Ω
f vdx ∀v ∈ V̂h, (4)

where 39

ah(w,v) = ∑
T∈Th

∫
T

∇2w : ∇2vdx+ ∑
e∈Eh

∫
e

{{
∂ 2w
∂n2

}}[[
∂v
∂n

]]
ds

+ ∑
e∈Eh

∫
e

{{
∂ 2v
∂n2

}}[[
∂w
∂n

]]
ds+ ∑

e∈Eh

σ
|e|

∫
e

[[
∂w
∂n

]][[
∂v
∂n

]]
ds. (5)

Here Eh is the set of the edges in Th, {{∂ 2v/∂n2}} (resp. [[∂v/∂n]]) is the average of 40

the second normal derivative of v (resp. the jump of the first normal derivative of v) 41

across an edge, |e| is the length of the edge e, and σ > 0 is a penalty parameter. 42

The quadratic C0 interior penalty method is consistent. It is also stable if σ is 43

sufficiently large, which is assumed to be the case. (The magnitude of σ is related to 44

certain inverse estimates. It can be taken to be 5 in practice.) It can be shown (cf. [3]) 45

that the solution ûh of (4) satisfies the following error estimate: 46

‖û− ûh‖h ≤Chα‖ f‖L2(Ω), (6)

where û is the zero mean solution of (1), α is the index of elliptic regularity in (3), 47

and the norm ‖ · ‖h is given by 48

‖v‖2
h = ∑

T∈Th

|v|2H2(T) + ∑
e∈Eh

|e|−1‖[[∂v/∂n]]‖2
L2(e)

.

C0 interior penalty methods have certain advantages over other finite element 49

methods for fourth order problems. They are simpler than conforming methods 50

which require C1 elements. They come in a natural hierarchy that can capture smooth 51

solutions efficiently, which is not the case for classical nonconforming methods. Un- 52

like mixed methods they preserve the positive definiteness of the continuous problem 53

and are easier to develop for more complicated problems (cf. [9]). 54
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Another significant advantage of C0 interior penalty methods comes from the 55

fact that the underlying finite element spaces are standard spaces for second order 56

problems. (Note that the essential boundary condition for (1) is only enforced weakly 57

in (4) and the finite element space Vh does not involve any boundary condition.) 58

Therefore multigrid solves for second order problems can be easily implemented as 59

a preconditioner. By using such a preconditioner in the smoothing steps of multigrid 60

algorithms for fourth order problems, the performance of the smoother and hence 61

the overall performance of the multigrid algorithms can be significantly improved. 62

This approach was carried out in [7] for the biharmonic problem with the boundary 63

conditions of clamped plates. Below we will use this approach to develop multigrid 64

methods for (4). 65

3 Multigrid Methods 66

Let Tk (k = 0,1, · · · ) be a sequence of simplicial triangulations obtained from the 67

initial triangulation T0 by uniform refinement. We will use Vk (resp. ak(·, ·)) to denote 68

the finite element space (resp. the bilinear form for the C0 interior penalty method) 69

associated with Tk. 70

Let V ′k be the dual space of Vk and V̂k = {v ∈ Vk :
∫

Ω vdx = 0} be the zero-mean 71

subspace of Vk. We can identify V̂ ′k with the subspace of V ′k whose members annihilate 72

the constant functions, i.e., V̂ ′k = {γ ∈ V ′k : 〈γ,1〉 = 0}, where 〈·, ·〉 is the canonical 73

bilinear form between a vector space and its dual. 74

Let the operator Ak : Vk −→ V̂ ′k be defined by 〈Akv,w〉= ak(v,w) for all v,w ∈Vk. 75

We can then rewrite the discrete problem (4) as Akûk = φk, where ûk ∈ V̂k and φk ∈ V̂ ′k 76

satisfies 〈φk,v〉=
∫

Ω f vdx for all v∈Vk. Below we will develop multigrid algorithms 77

for equations of the form 78

Akz = ψ (7)

where z ∈ V̂k and ψ ∈ V̂ ′k . 79

There are two ingredients in the design of multigrid algorithms. First of all, we 80

need intergrid transfer operators to move data between consecutive levels. Since 81

the finite element spaces are nested, we can take the coarse-to-fine operator Ik
k−1 : 82

Vk−1 −→Vk to be the natural injection and the fine-to-coarse operator Ik−1
k : V ′k −→ 83

V ′k−1 to be the transpose of Ik
k−1 with respect to the canonical bilinear forms, i.e., 84

〈Ik−1
k γ,v〉= 〈γ, Ik

k−1v〉 for all γ ∈V ′k , v ∈Vk−1. Note that Ik
k−1 maps V̂k−1 into V̂k and 85

consequently Ik−1
k maps V̂ ′k into V̂ ′k−1. 86

The second ingredient is a good smoother that can damp out the highly oscillatory 87

part of the error of an approximate solution so that the remaining part of the error 88

can be captured accurately on a coarser grid. Here we take advantage of the fact that 89

the P2 Lagrange finite element space is a standard space for second order problems 90

to incorporate a multigrid Poisson solve in the smoother. Let Lk : V̂k −→ V̂ ′k be the 91

discrete Laplace operator defined by 92

〈Lkv,w〉=
∫

Ω
∇v ·∇wdx ∀v,w ∈ V̂k. 93
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We take S−1
k : V̂ ′k −→ V̂k to be an approximate inverse of Lk obtained from a multigrid 94

Poisson solve such that 95

〈Skv,v〉 ≈ |v|2H1(Ω)
∀v ∈ V̂k. (8)

The smoothing step in our multigrid algorithms for (7) is then given by 96

znew = zold +λkS−1
k (ψ−Akzold), (9)

where λk is a damping factor chosen so that the spectral radius ρ(λkS−1
k Ak) is <2. It 97

follows from (8) and standard inverse estimates (cf. [5]) that we can take λk =Ch2
k . 98

Note that the computational cost of (9) is proportional to the dimension of V̂k, which 99

implies that the overall computational costs of the multigrid algorithms in Sects. 3.1 100

and 3.2 are also proportional to the dimension of V̂k. 101

We can now describe the V -cycle and W -cycle algorithms (cf. [10]) in terms of 102

the intergrid transfer operators and the smoothing scheme. 103

3.1 V -Cycle Algorithm 104

The V -cycle algorithm computes an approximate solution MGV (k,ψ ,z0,m) of (7) 105

with initial guess z0 ∈ V̂k and m pre-smoothing and m post-smoothing steps. For 106

k = 0, we take MGV (0,ψ ,z0,m) to be the output of a direct solve. For k ≥ 1, we 107

compute MGV (k,ψ ,z0,m) recursively in three steps. 108

Pre-smoothing For 1≤ �≤ m, compute z� recursively by 109

z� = z�−1 +λkS−1
k (ψ−Akz�−1).

Coarse Grid Correction Compute 110

zm+1 = zm + Ik
k−1MGV (k−1,ρk−1,0,m),

where ρk−1 = Ik−1
k (ψ−Akzm) ∈ V̂ ′k−1 is the transferred residual of zm. 111

Post-smoothing For m+ 2≤ �≤ 2m+ 1, compute z� recursively by 112

z� = z�−1 +λkS−1
k (ψ−Akz�−1).

The final output is MGV (k,ψ ,z0,m) = z2m+1. 113

3.2 W -Cycle Algorithm 114

The W -cycle algorithm computes an approximate solution MGW (k,ψ ,z0,m) of (7) 115

with initial guess z0 ∈ V̂k and m pre-smoothing and m post-smoothing steps. The only 116

difference between the V -cycle algorithm and the W -cycle algorithm is in the coarse 117

grid correction step, where the coarse grid algorithm is applied twice to the coarse 118

grid residual equation. More precisely, we have 119

zm+ 1
2
= MGW (k−1,ρk−1,0,m),

zm+1 = zm +MGW (k−1,ρk−1,zm+ 1
2
,m).

120
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Remark 1. For simplicity we have described the multigrid algorithms in terms of the 121

space V̂k where the bilinear form ak(·, ·) is nonsingular. But the multigrid Poisson 122

solve S−1
k (and hence the V -cycle and W -cycle algorithms) can be implemented on 123

Vk for k ≥ 1. The implementation of multigrid algorithms for the singular Neumann 124

problem is discussed for example in [1]. 125

4 Convergence Properties 126

Let z0 ∈ V̂k be the initial guess and z† ∈ V̂k be the output of the V -cycle or W -cycle 127

algorithm for (7). Numerical results indicate that 128

‖z− z†‖ah ≤Cm−α‖z− z0‖ah , (10)

where α is the index of elliptic regularity in (3) and ‖ · ‖ah =
√

ah(·, ·) is the energy 129

norm, provided that the number of smoothing steps m≥m∗. Here m∗ is a sufficiently 130

large positive integer independent of k. In particular the multigrid algorithms are 131

contractions for sufficiently large m and the contraction numbers are bounded away 132

from 1 uniformly. A similar estimate was obtained in [7] for the boundary conditions 133

of clamped plates. The derivation of (10) for the Cahn-Hilliard boundary conditions 134

will be carried out in [4] where general fourth order problems are considered. 135

A significant benefit of including a multigrid Poisson solve in the smoothing step 136

(9) is that the resulting smoothing property is similar to that for second order prob- 137

lems (cf. [7]) so that the contraction number estimate (10) is also similar to that for 138

second order problems. Indeed, because of the estimate (8), we can derive a smooth- 139

ing property for (9) with respect to a family of mesh dependent norms ||| · |||s,k such 140

that ||| · |||0,k≈ |·|H1(Ω) and ||| · |||1,k≈ |·|H2(Ω) on the space V̂k. Note that the smoothing 141

properties of standard smoothers for second order problems are described in terms 142

of mesh dependent norms ||| · |||s,k such that ||| · |||0,k ≈ ‖·‖L2(Ω) and ||| · |||1,k ≈ |· |H1(Ω) 143

on the finite element spaces. The good performance of the smoothing step (9) is due 144

to the similarity between the Hilbert scales [H1(Ω),H2(Ω)] and [L2(Ω),H1(Ω)]. 145

If we use a standard smoother such as the Richardson relaxation in a multigrid 146

algorithm for (7), then the smoothing property will be determined by the Hilbert 147

scale [L2(Ω),H2(Ω)]. In this case the estimate (10) will be replaced by the estimate 148

‖z− z†‖ah ≤Cm−α/2‖z− z0‖ah , (11)

which means that the effect of 100 smoothing steps without the preconditioner is 149

roughly equivalent to the effect of 10 smoothing steps with the preconditioner. As 150

far as we know, all existing multigrid methods for fourth order problems (except 151

those in [6]) use standard smoothers and their convergence is governed by (11). 152

5 Numerical Results 153

The numerical experiments were performed on sienna@IMA (Intel P4, 3.4 GHz 154

CPU, 2 G memory) at the Institute for Mathematics and its Applications. In the nu- 155

merical experiments we take σ = 5 and the preconditioner to be a V -cycle Poisson 156
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solve with one pre-smoothing step and one post-smoothing step. (Other multigrid 157

Poisson solves can also be used, but the V (1,1) solve appears to be the most effi- 158

cient.) The contraction numbers for the V -cycle and W -cycle algorithms on the unit 159

square (with two elements in the initial mesh) are reported in Tables 1 and 2. It is 160

observed that the V -cycle (resp. W -cycle) algorithm is a contraction for m≥ 4 (resp. 161

m≥ 2).

Table 1. Contraction numbers for the V-cycle algorithm on the unit square.

t1.1
k

m
4 5 6 7 8 9 10 11 12 13

t1.21 0.212 0.126 0.0813 0.0594 0.0442 0.0332 0.0252 0.0192 0.0147 0.0114
t1.32 0.329 0.223 0.190 0.164 0.142 0.124 0.109 0.0967 0.0861 0.0771
t1.43 0.412 0.342 0.308 0.279 0.255 0.234 0.217 0.203 0.190 0.179
t1.54 0.479 0.420 0.386 0.357 0.334 0.314 0.296 0.282 0.266 0.257
t1.65 0.537 0.467 0.434 0.408 0.386 0.367 0.351 0.336 0.324 0.312
t1.76 0.578 0.494 0.462 0.436 0.415 0.396 0.380 0.366 0.353 0.341
t1.87 0.619 0.503 0.472 0.446 0.425 0.406 0.391 0.376 0.364 0.351

Table 2. Contraction numbers for the W-cycle algorithm on the unit square.

t2.1
k

m
2 3 4 5 6 7 8 9 10 11

t2.21 0.661 0.368 0.212 0.126 0.0813 0.0594 0.0442 0.0332 0.0252 0.0192
t2.32 0.483 0.360 0.291 0.241 0.203 0.172 0.148 0.128 0.112 0.0983
t2.43 0.475 0.375 0.335 0.282 0.263 0.229 0.215 0.195 0.182 0.171
t2.54 0.455 0.383 0.335 0.308 0.287 0.270 0.256 0.244 0.233 0.223
t2.65 0.456 0.384 0.344 0.315 0.297 0.279 0.267 0.255 0.245 0.237
t2.76 0.455 0.384 0.344 0.316 0.297 0.280 0.268 0.256 0.248 0.239
t2.87 0.455 0.384 0.344 0.317 0.297 0.281 0.269 0.258 0.248 0.240

162

For comparison we report in Table 3 the contraction numbers for the V -cycle 163

algorithm that does not use a preconditioner in the smoothing steps. The smoothing 164

step in this algorithm is the standard Richardson relaxation scheme. 165

We have also carried out numerical experiments for the L-shaped domain with 166

vertices (0,0), (1,0), (1,1), (−1,1), (−1,−1) and (0,−1). The initial mesh consists 167

of six isosceles triangles sharing (0,0) as a common vertex. The contraction numbers 168

for the W -cycle algorithm with/without the preconditioner are presented in Tables 4 169

and 5. 170

We note that the contraction numbers in Table 1 (resp. Table 4) for m smoothing 171

steps are comparable to the contraction numbers in Table 3 (resp. Tables 5) for m2
172

smoothing steps. 173
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Table 3. Contraction numbers for the V-cycle algorithm without a preconditioner on the unit
square.

t3.1
k

m
21 22 23 24 25 26 27 28 29 30

t3.21 0.428 0.410 0.392 0.376 0.361 0.346 0.332 0.320 0.307 0.296
t3.32 0.646 0.614 0.583 0.555 0.529 0.504 0.481 0.459 0.439 0.420
t3.43 0.770 0.728 0.690 0.654 0.621 0.591 0.562 0.535 0.510 0.487
t3.54 0.844 0.797 0.753 0.713 0.676 0.641 0.609 0.579 0.551 0.525
t3.65 0.895 0.843 0.795 0.752 0.711 0.674 0.639 0.607 0.577 0.548
t3.76 0.931 0.876 0.826 0.780 0.737 0.697 0.661 0.627 0.595 0.565
t3.87 0.960 0.902 0.849 0.801 0.757 0.715 0.677 0.642 0.609 0.578

Table 4. Contraction numbers for the W-cycle algorithm with a preconditioner on the L-shaped
domain.

t4.1
k

m
3 5 7 9 11 13 15 17 19 21 23

t4.21 0.319 0.187 0.125 0.105 0.0913 0.0798 0.0699 0.0614 0.0540 0.0476 0.0420
t4.32 0.383 0.273 0.206 0.161 0.139 0.132 0.125 0.119 0.113 0.108 0.103
t4.43 0.390 0.302 0.238 0.208 0.182 0.163 0.152 0.148 0.144 0.141 0.137
t4.54 0.386 0.309 0.271 0.245 0.224 0.208 0.193 0.181 0.170 0.161 0.153
t4.65 0.384 0.315 0.279 0.255 0.237 0.222 0.209 0.198 0.189 0.180 0.172
t4.76 0.384 0.316 0.281 0.257 0.240 0.226 0.213 0.203 0.193 0.185 0.177
t4.87 0.387 0.317 0.281 0.258 0.240 0.226 0.214 0.203 0.194 0.186 0.178

Table 5. Contraction numbers for the W-cycle algorithm without a preconditioner on the
L-shaped domain.

t5.1
k

m
5 7 9 11 13 15 17 19 21 23

t5.21 0.943 0.788 0.680 0.600 0.537 0.486 0.443 0.407 0.375 0.347
t5.32 0.790 0.585 0.505 0.459 0.426 0.394 0.375 0.358 0.342 0.328
t5.43 0.666 0.512 0.469 0.456 0.434 0.416 0.400 0.386 0.373 0.362
t5.54 0.580 0.519 0.484 0.454 0.434 0.418 0.405 0.394 0.385 0.376
t5.65 0.581 0.527 0.491 0.465 0.444 0.427 0.414 0.402 0.392 0.384
t5.76 0.587 0.531 0.494 0.467 0.446 0.429 0.415 0.404 0.394 0.386
t5.87 0.587 0.530 0.493 0.467 0.446 0.429 0.415 0.404 0.394 0.386

Finally we compare the computational cost between the preconditioned schemes 174

and the un-preconditioned schemes. On the unit square, the contraction numbers for 175

the preconditioned V-cycle algorithm with m = 4 (cf. Table 1) are about the same as 176

the contraction numbers for the un-preconditioned V-cycle algorithm with m = 29 177

(cf. Table 3). For k = 7, the former takes 1.4× 108 floating point operations and 178

0.55 s while the latter takes 3.2×108 floating point operations and 1.2 s. 179



Page 136

UN
CO

RR
EC

TE
D

PR
O
O
F

Susanne C. Brenner, Shiyuan Gu, and Li-yeng Sung

On the L-shaped domain, the contraction numbers for the preconditioned W-cycle 180

algorithm with m = 3 (cf. Table 4) are about the same as the contraction numbers 181

for the un-preconditioned W-cycle algorithm with m = 23 (cf. Table 5). For k = 7, 182

the former takes 4.7× 108 floating point operations and 2.1 s while the latter takes 183

1.1×109 floating point operations and 4.7 s. 184
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