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1 Introduction 9

Shape optimization aims to optimize an objective function by changing the shape of 10

the computational domain. In recent years, shape optimization has received consid- 11

erable attentions. On the theoretical side there are several publications dealing with 12

the existence of solution and the sensitivity analysis of the problem; see e.g., [6] and 13

references therein. On the practical side, optimal shape design has played an impor- 14

tant role in many industrial applications, for example, aerodynamic shape design [7], 15

artery bypass design [1, 10], and so on. In this paper, we propose a general frame- 16

work for the parallel solution of shape optimization problems, and study it in detail 17

for the optimization of an artery bypass problem. 18

For PDE constrained optimization problems, there are two basic approaches: 19

nested analysis and design and simultaneous analysis and design (one-shot meth- 20

ods). As computers become more powerful in processing speed and memory capac- 21

ity, one-shot methods become more attractive due to their higher degree of paral- 22

lelism, better scalability, and robustness in convergence. The main challenges in the 23

one-shot approaches are that the nonlinear system is two to three times larger, and 24

the corresponding indefinite Jacobian system is a lot more ill-conditioned and also 25

much larger. So design a preconditioner that can substantially reduce the condition 26

number of the large fully coupled system and, at the same time, provides the scalabil- 27

ity for parallel computing becomes a very important stage in the one-shot methods. 28

There are several recent publications on one-shot methods for PDE constrained op- 29

timization problems. In [5], a reduced Hessian sequential quadratic programming 30

method was introduced for an aerodynamic design problem. In [4], a parallel full 31

space method was introduced for the boundary control problem where a Newton- 32

Krylov method is used together with Schur complement type preconditioners. In [9] 33

and [8], an overlapping Schwarz based Lagrange-Newton-Krylov approach (LNKSz) 34

was investigated for some boundary control problems. As far as we know no one has 35

studied shape optimization problems using LNKSz, which has the potential to solve 36

very large problems on machines with a large number of processors (np). The previ- 37
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ous work on LNKSz doesn’t consider the change of the computational domain which 38

makes the study much more difficult and interesting. 39

2 Shape Optimization on a Moving Mesh 40

We consider a class of shape optimization problems governed by the stationary in- 41

compressible Navier-Stokes equations defined in a two dimensional domain Ωα . Our 42

goal is to computationally find the optimal shape for part of the boundary ∂Ωα such 43

that a given objective function Jo is optimized. We represent the part of the boundary 44

by a smooth function α(x) determined by a set of parameters a = (a1,a2, . . . ,ap). By 45

changing the shape defined by α(x), one can optimize certain properties of the flow. 46

In this paper, we focus on the minimization of the energy dissipation in the whole 47

flow field and use the integral of the squared energy deformation as the objective 48

function [6] 49

min
u,α

Jo(u,α) = 2μ
∫

Ωα
ε(u):ε(u)dxdy+

β
2

∫
I
(α ′′)2dx

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−μΔu+u ·∇u+∇p = f in Ωα ,
∇ ·u = 0 in Ωα ,

u = g on Γinlet ,
u = 0 on Γwall ,

μ
∂u
∂n
− p ·n = 0 on Γoutlet ,

α(a) = z1, α(b) = z2,

(1)

where u = (u,v) and p represent the velocity and pressure, n is the outward unit 50

normal vector on ∂Ωα and μ is the kinematic viscosity. Γinlet , Γoutlet and Γwall rep- 51

resent the inlet, outlet and wall boundaries, respectively; see Fig. 1. f is the given 52

body force and g is the given velocity at the inlet Γinlet . ε(u) = 1
2 (∇u+(∇u)T) is the 53

deformation tensor for the flow velocity u and β is a nonnegative constant. I = [a,b] 54

is an interval in which the shape function α(x) is defined. In the constraints, the first 55

five equations are the Navier-Stokes equations and boundary conditions and the last 56

two equations indicate that the optimized boundary should be connected to the rest 57

of the boundary and z1 and z2 are two given constants. The last term in the objective 58

function is a regularization term providing the regularity of ∂Ωα . 59

The optimization problem (1) is discretized with a LBB-stable (Ladyzhenskaya- 60

Babuška-Brezzi) Q2−Q1 finite element method. Since the computational domain of 61

the problem changes during the optimization process, the mesh needs to be modified 62

following the computational domain. Generally speaking, there are two strategies to 63

modify the mesh. One is mesh reconstruction which often guarantees a good new 64

mesh but is computationally expensive. The other strategy is moving mesh which 65

is cheaper but the deformed mesh may become ill-conditioned when the boundary 66

variation is large. In our test case the boundary variations are not very large, so we 67
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Fig. 1. The initial domain Ωα0 (dashed line) and deformed domain Ωα (solid line) over a
simple mesh. The boundary Γoptimized (ED) denotes the part of the boundary whose shape is
computed by the optimization process
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use the latter strategy. The moving of the mesh is simply described by Laplace’s 68

equations. 69{ −Δδx = 0 in Ωα0 ,
δx = gα on ∂Ωα0 ,

(2)

where δx is the mesh displacement and gα = (gx
α ,g

y
α) is the displacement on the 70

boundary determined by α(x). Note that gα is obtained automatically during the 71

iterative solution process. For example, in Fig. 1, gx
α = 0 and gy

α = α(x)−α0(x). 72

The Eqs. (2) are discretized with a Q2 finite element method. The discretized shape 73

optimization problem is given as follows 74

min
u,a,δx

Jo(u,a,δx) = μuTJu+
β
2

Jα

subject to⎧⎪⎪⎨
⎪⎪⎩

Ku+B(u)u−Qp = Ff +Fu,
QTu = 0,
Dδx = Fx,
Aa = Fa.

(3)

Here Ff refers to the discretized body force, Fu and Fx refer to the Dirichlet boundary 75

condition for u and δx, respectively, and Aa and Fa are the geometric constrains. Note 76

that K, B(u), Q and J depend on the grid displacement δx, while D is independent of 77

δx. Here δx is treated as an optimization variable and the moving mesh equations are 78

viewed as constraints of the optimization problem which are solved simultaneously 79

with the other equations. 80

3 One-Shot Lagrange-Newton-Krylov-Schwarz Methods 81

We use a Lagrange multiplier method to transform the optimization problem (3) 82

to a nonlinear system G(X) = 0 which is solved by an inexact Newton method. 83
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Given an initial guess X0, at each iteration, k = 0,1, · · · , we use a GMRES method 84

to approximately solve the preconditioned system 85

Hk(Mk)−1(Mkdk) =−Gk, (4)

to find a search direction dk, where Hk = ∇X G(Xk) is the Jacobian matrix of the 86

nonlinear function, Gk = G(Xk) and (Mk)−1 is an additive Schwarz preconditioner 87

[11] defined as 88

(Mk)−1 =
Np

∑
l=1

(Rδ
l )

T(Hk
l )
−1Rδ

l , 89

where Hk
l = Rδ

l Hk (Rδ
l )

T, Rδ
l is a restriction operator from Ωα to the overlapping 90

subdomain, δ is the size of the overlap which is understood in terms of the number 91

of elements; i.e., δ = 8 means the overlapping size is 8 layers of elements, and Np 92

is the number of subdomains which is equal to np in this paper. After approximately 93

solving (4), the new approximate solution is defined as Xk+1 = Xk + τkdk, and the 94

step length τk is selected by a cubic line search. 95

4 Numerical Experiments 96

The algorithm introduced in the previous sections is applicable to general shape op- 97

timization problems governed by incompressible Navier-Stokes equations. Here we 98

study an application of the algorithm for the incoming part of a simplified artery by- 99

pass problem1 [2] as shown in Fig. 2. Our solver is implemented using PETSc [3]. 100

All computations are performed on an IBM BlueGene/L supercomputer at the Na- 101

tional Center for Atmospheric Research. Unstructured meshes, which are generated 102

with CUBIT and partitioned with ParMETIS, are used in this paper.

A

B
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F
y
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1
0.8

410-2-5 x

Fig. 2. The incoming part of a simplified bypass model; The red boundary Γoptimized denotes
the part of the boundary whose shape is to be determined by the optimization process
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103

1 This is the incoming part of a bypass: www.reshealth.org/images/greystone/
em\delimiter"026E30F_2405.gif

www.reshealth.org/images/greystone/emdelimiter "026E30F _2405.gif
www.reshealth.org/images/greystone/emdelimiter "026E30F _2405.gif
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Without the blockage, the flow is supposed to go from AB to CD, but now we 104

assume that AB is blocked and the flow has to go through EF. For simplicity, we let 105

the thickness EF be fixed and the body force f = 0 in the Navier-Stokes equations. 106

The shape of the bypass is determined by the curve GH as in Fig. 2. The boundary 107

conditions on the inlet Γintlet are chosen as a constant vin, no-slip boundary conditions 108

are used on the walls Γwall . On the outlet section Γoutlet , the free-stress boundary 109

conditions are imposed; see (1). We use a polynomial α(x) = ∑p
i=1 aixi with p = 7 to 110

represent the part of the boundary that needs to be optimized. Other shape functions 111

can be used, but here we simply follow [1]. The goal is to compute the coefficients 112

a = (a1, . . . ,ap), such that the energy loss is minimized. 113

In all experiments, we use a hand-coded Jacobian matrix. The Jacobian system 114

in each Newton step is solved by a right-preconditioned restarted GMRES with an 115

absolute tolerance of 10−10, a relative tolerance of 10−3, and a restart at 100. We stop 116

the Newton iteration when the nonlinear residual is decreased by a factor of 10−6.

Fig. 3. Velocity distribution of the initial (left) and optimal shapes (right). The initial shape is
given by a straight line. β = 0.01 and Re = 100
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Fig. 4. Velocity distribution of the initial (left) and optimal shapes (right). The initial shape is
given as α(x) = 0.4+0.45x2 +0.15x3. β = 0.01 and Re = 100
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117

In the first test case, we set the Reynolds number Re = Lvin
μ to 100, where L = 118

1.0 cm is the artery diameter, vin = 1.0 cm/s is the inlet velocity and μ = 0.01 cm2/s. 119
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We solve the problem on a mesh with about 18,000 elements. β = 0.01 and the de- 120

grees of freedom (DOF) is 589,652. The initial shape is given by a straight line, and 121

Fig. 3 shows the velocity distribution of the initial (left) and optimal shapes (right). 122

The energy dissipation of the optimized shape is reduced by about 5.13 % compared 123

to the initial shape. Figure 4 is the velocity distribution of another initial shape (left) 124

which is given as α(x) = 0.4+0.45x2+0.15x3 and the corresponding optimal shape 125

(right). The reduction of the energy dissipation of this case is about 11.96 %. Fig- 126

ures 3 and 4 show that we can obtain nearly the same optimal shape from different 127

initial shapes. 128

In the test case showed in Fig. 3, if we add a small inlet velocity at the boundary 129

AB, which is equal to that the blood flow is not totally blocked, the computed optimal 130

shape would be different from what is shown in Fig. 3. If we move the boundary 131

AB towards CD (A from (−5,0) to (−3,0) and B from (−5,0.8) to (−3,0.8)), the 132

optimal shape is nearly the same as Fig. 3 since the flow in the “dead area” doesn’t 133

impact much of the optimal solution.
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Fig. 5. The initial shape and optimal shapes with different values of parameter β . DOF =
589,652 and Re = 100
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134

The regularization parameter β in the objective function is very important for 135

shape optimization problems. From Table 1 we see that reducing β can increase the 136

reduction of the energy dissipation (“Init.”, “Opt.” and “Reduction” are the initial, 137

optimized and reduction of the energy dissipation in the table), but the number of 138

Newton (Newton) and the average number of GMRES iterations per Newton (GM- 139

RES) and the total compute time in seconds (Time) increase, which means that the 140

nonlinear algebraic system is harder to solve when β is small. This is because the 141

boundary of Ωα is more flexible and may become irregular when β is too small. Fig- 142

ure 5 shows the initial shape and the optimized shapes obtained with different values 143

of β . From this figure we see that β controls the boundary deformation. 144

To show the parallel scalability of the algorithm, two meshes with DOF = 145

589,652 and DOF = 928,572 are considered. The strong scalability of our algorithm 146

is good; see Fig. 6 and Table 2, which show that the speedup is almost linear when 147

np is small. As expected in one-level Schwarz methods, the preconditioner becomes 148

worse as the number of subdomains increases. 149

Table 3 shows some results for different Re. Judging from the increase of the 150

number of linear and nonlinear iterations, it is clear that the problem becomes harder 151
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Table 1. Effect of the parameter β . DOF = 589,652, Re = 100.

β Newton GMRES Time
Energy Dissipation

Init. Opt. Reduction
0.05 4 386.00 477.89 1.17 1.12 4.27%
0.01 5 441.40 600.86 1.17 1.11 5.13%

0.005 5 439.00 599.77 1.17 1.10 5.98%
0.001 6 510.67 747.78 1.17 1.10 5.98%

Table 2. Parallel scalability for two different size grids. β = 0.1, overlap = 6 and Re = 100.

np
DOF = 589,652 DOF = 928,572

Newton GMRES Time Newton GMRES Time
32 4 124.50 2959.73 — —— ——
64 4 179.25 980.48 4 146.50 2121.52
128 4 346.75 455.69 4 330.00 844.62
256 4 533.25 280.96 4 520.75 541.97
512 4 917.50 282.07 4 861.00 361.08
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Fig. 6. The speedup and the total compute time for two different mesh sizes. Re = 100
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as we increase the Re. On the other hand, we achieve higher percentage of reduction 152

of energy dissipation in the harder to solve situations.

Table 3. The impact of Re. β = 0.1, overlap = 8, DOF = 589,652, np = 128.

Re Newton GMRES Time
Energy Dissipation

Init. Opt. Reduction
100 4 346.75 456.83 1.17 1.13 3.42%
200 4 372.00 470.16 0.65 0.62 4.62%
300 6 671.00 871.19 12.56 11.80 6.05%
600 7 721.71 1035.84 7.43 6.97 6.19%

153



Page 572

UN
CO

RR
EC

TE
D

PR
O
O
F

Rongliang Chen and Xiao-Chuan Cai

5 Conclusions and Future Work 154

We developed a parallel one-shot LNKSz for two-dimensional shape optimization 155

problems governed by incompressible Navier-Stokes equations. We tested the algo- 156

rithms for an artery bypass design problem with more than 900,000 DOF and up to 157

512 processors. The numerical results show that our method is quite robust with re- 158

spect to the Re and the regularization parameter. The strong scalability is almost ideal 159

when np is not too large. In the future, we plan to study some multilevel Schwarz 160

methods which may improve the scalability when np is large. 161
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