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1 Introduction 14

Some algorithmic aspects of systems of PDEs based simulations can be better clar- 15

ified by means of symbolic computation techniques. This is very important since 16

numerical simulations heavily rely on solving systems of PDEs. For the large-scale 17

problems we deal with in today’s standard applications, it is necessary to rely on 18

iterative Krylov methods that are scalable (i.e., weakly dependent on the number 19

of degrees on freedom and number of subdomains) and have limited memory re- 20

quirements. They are preconditioned by domain decomposition methods, incomplete 21

factorizations and multigrid preconditioners. These techniques are well understood 22

and efficient for scalar symmetric equations (e.g., Laplacian, biLaplacian) and to 23

some extent for non-symmetric equations (e.g., convection-diffusion). But they have 24

poor performances and lack robustness when used for symmetric systems of PDEs, 25

and even more so for non-symmetric complex systems (fluid mechanics, porous me- 26

dia. . . ). As a general rule, the study of iterative solvers for systems of PDEs as op- 27

posed to scalar PDEs is an underdeveloped subject. 28

We aim at building new robust and efficient solvers, such as domain decomposi- 29

tion methods and preconditioners for some linear and well-known systems of PDEs. 30

In particular, we shall concentrate on Neumann-Neumann and FETI type algorithms 31

which are very popular for scalar symmetric positive definite second order problems 32

(see, for instance, [9, 11]), and to some extent to different other problems, like the 33

advection-diffusion equations [1], plate and shell problems [16] or the Stokes equa- 34

tions [13]. This work is motivated by the fact that, in some sense, these methods 35

applied to systems of PDEs (such as Stokes, Oseen, linear elasticity) are less op- 36

timal than the domain decomposition methods for scalar problems. Indeed, in the 37
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case of two subdomains consisting of the two half planes, it is well-known that the 38

Neumann-Neumann preconditioner is an exact preconditioner (the preconditioned 39

operator is the identity operator) for the Schur complement equation for scalar equa- 40

tions like the Laplace problem. Unfortunately, this does not hold in the vector case. 41

In order to achieve this goal, we use algebraic methods developed in construc- 42

tive algebra, D-modules (differential modules) and symbolic computation such as the 43

so-called Smith or Jacobson normal forms and Gröbner basis techniques for trans- 44

forming a linear system of PDEs into a set of independent PDEs. These algebraic and 45

symbolic methods provide important intrinsic information (e.g., invariants) about the 46

linear system of PDEs to solve. These build-in properties need to be taken into ac- 47

count in the design of new numerical methods, which can supersede the usual ones 48

based on a direct extension of the classical scalar methods to linear systems of PDEs. 49

By means of these techniques, it is also possible to transform the linear system of 50

PDEs into a set of decoupled PDEs under certain types of invertible transformations. 51

One of these techniques is the so-called Smith normal form of the matrix of OD 52

operators associated with the linear system. This normal form was introduced by H. 53

J. S. Smith (1826–1883) for matrices with integer entries (see, e.g., [17], Theorem 54

1.4). The Smith normal form has already been successfully applied to open problems 55

in the design of Perfectly Matched Layers (PML). The theory of PML for scalar 56

equations was well-developed and the usage of the Smith normal form allowed to 57

extend these works to systems of PDEs. In [12], a general approach is proposed and 58

applied to the particular case of the compressible Euler equations that model aero- 59

acoustic phenomena and in [2] for shallow-water equations. 60

For domain decomposition methods, several results have been obtained on com- 61

pressible Euler equations [7], Stokes and Oseen systems [8] or in [10] where a new 62

method in the “Smith” spirit has been derived. Previously the computations were 63

performed heuristically, whereas in this work, we aim at finding a systematic way to 64

build optimal algorithms for given PDE systems. 65

Notations. If R is a ring, then Rp×q is the set of p× q matrices with entries in 66

R and GLp(R) is the group of invertible matrices of Rp×p, namely GLp(R) = {E ∈ 67

Rp×p | ∃F ∈Rp×p : E F =F E = Ip}. An element of GLp(R) is called an unimodular 68

matrix. A diagonal matrix with elements di’s will be denoted by diag(d1, . . . ,dp). If k 69

is a field (e.g., k =Q, R, C), then k[x1, . . . ,xn] is the commutative ring of polynomials 70

in x1, . . . ,xn with coefficients in k. In what follows, k(x1, . . . ,xn) will denote the field 71

of rational functions in x1, . . . ,xn with coefficients in k. Finally, if r, r′ ∈ R, then r′ |r 72

means that r′ divides r, i.e., there exists r′′ ∈ R such that r = r′′ r′. 73

2 Smith Normal Form of Linear Systems of PDEs 74

We first introduce the concept of Smith normal form of a matrix with polynomial 75

entries (see, e.g., [17], Theorem 1.4). The Smith normal form is a mathematical 76

technique which is classically used in module theory, linear algebra, symbolic com- 77

putation, ordinary differential systems, and control theory. It was first developed to 78

study matrices with integer entries. But, it was proved to exist for any principal ideal 79
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domain (namely, a commutative ring R whose ideals can be generated by an element 80

of R) [15]. Since R = k[s] is a principal ideal domain when k is a field, we have the 81

following theorem only stated for square matrices. 82

Theorem 1. Let k be a field, R = k[s], p a positive integer and A ∈ Rp×p. Then, there 83

exist two matrices E ∈GLp(R) and F ∈ GLp(R) such that 84

A = E S F, 85

where S = diag(d1, . . . ,dp) and the di ∈ R satisfying d1 |d2 | · · · |dp. In particular, 86

we can take di = mi/mi−1, where mi is the greatest common divisor of all the i× i- 87

minors of A (i.e., the determinants of all i× i-submatrices of A), with the convention 88

that m0 = 1. The matrix S = diag(d1, . . . ,dp) ∈ Rp×p is called a Smith normal form 89

of A. 90

We note that E ∈GLp(R) is equivalent to det(E) is an invertible polynomial, i.e., 91

det(E) ∈ k\{0}. Also, in what follows, we shall assume that the di’s are monic poly- 92

nomials, i.e., their leading coefficients are 1, which will allow us to call the matrix 93

S= diag(d1, . . . ,dp) the Smith normal form of A. But, the unimodular matrices E and 94

F are not uniquely defined by A. The proof of Theorem 1 is constructive and gives 95

an algorithm for computing matrices E , S and F . The computation of Smith normal 96

forms is available in many computer algebra systems such as Maple, Mathematica, 97

Magma. . . 98

Consider now the following model problem in R
d with d = 2,3: 99

Ld(w) = g in R
d , |w(x)| → 0 for |x| → ∞. (1)

For instance, Ld(w) can represent the Stokes/Oseen/linear elasticity operators in 100

dimension d. Moreover, if we suppose that the inhomogeneous linear system of PDEs 101

(1) has constant coefficients, then it can be rewritten as 102

Ad w = g, (2)

where Ad ∈ Rp×p, R = k[∂x,∂y] (resp., R = k[∂x,∂y,∂z]) for d = 2 (resp., d = 3) and 103

k is a field. 104

In what follows, we shall study the domain decomposition problem in which R
d

105

is divided into subdomains. We assume that the direction normal to the interface 106

of the subdomains is particularized and denoted by ∂x. If Rx = k(∂y)[∂x] for d = 107

2 or Rx = k(∂y,∂z)[∂x] for d = 3, then, computing the Smith normal form of the 108

matrix Ad ∈ Rp×p
x , we obtain Ad = E S F , where S ∈ Rp×p

x is a diagonal matrix, E ∈ 109

GLp(Rx) and F ∈ GLp(Rx). The entries of the matrices E , S, F are polynomials in 110

∂x, and E and F are unimodular matrices, i.e., det(E), det(F) ∈ k(∂y)\ {0} if d = 2, 111

or det(E), det(F) ∈ k(∂y,∂z)\ {0} if d = 3. We recall that the matrices E and F are 112

not unique contrary to S. Using the Smith normal form of Ad , we get: 113

Ad w = g ⇔ {ws := F w, S ws = E−1 g}. (3)

In other words, (3) is equivalent to the uncoupled linear system: 114



Page 30

UN
CO

RR
EC

TE
D

PR
O
O
F

T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat

S ws = E−1 g. (4)

Since E ∈ GLp(Rx) and F ∈ GLp(Rx), the entries of their inverses are still poly- 115

nomial in ∂x. Thus, applying E−1 to the right-hand side g of Ad w = g amounts 116

to taking k-linear combinations of derivatives of g with respect to x. If Rd is split 117

into two subdomains R−×R
d−1 and R

+×R
d−1, where R

− = {x ∈ R | x < 0} and 118

R
+ = {x ∈ R | x > 0}, then the application of E−1 and F−1 to a vector can be done 119

for each subdomain independently. No communication between the subdomains is 120

necessary. 121

In conclusion, it is enough to find a domain decomposition algorithm for the 122

uncoupled system (4) and then transform it back to the original one (2) by means of 123

the invertible matrix F over Rx. This technique can be applied to any linear system 124

of PDEs once it is rewritten in a polynomial form. The uncoupled system acts on the 125

new dependent variables ws, which we shall further call Smith variables since they 126

are issued from the Smith normal form. 127

Remark 1. Since the matrix F is used to transform (4) to (2) (see the first equation of 128

the right-hand side of (3)) and F is not unique, we need to find a matrix F as simple 129

as possible (e.g., F has minimal degree in ∂x) so that to obtain a final algorithm 130

whose form can be used for practical computations. 131

Example 1 Consider the two dimensional elasticity operator defined by E2(u) := 132

−μ Δ u− (λ + μ)∇divu. If we consider the commutative polynomial rings R = 133

Q(λ ,μ)[∂x,∂y], Rx =Q(λ ,μ)(∂y)[∂x] =Q(λ ,μ ,∂y)[∂x] and 134

A2 =

(
(λ + 2 μ)∂ 2

x + μ ∂ 2
y (λ + μ)∂x ∂y

(λ + μ)∂x ∂y μ ∂ 2
x +(λ + 2 μ)∂ 2

y

)
∈ R2×2

135

the matrix of PD operators associated with E2, i.e., E2(u) = A2 u, then the Smith 136

normal form of A2 ∈ R2×2
x is defined by: 137

SA2 =

(
1 0
0 Δ 2

)
. (5)

The particular form of SA2 shows that, over Rx, the system of PDEs for the linear 138

elasticity in R
2 is algebraically equivalent to a biharmonic equation. 139

Example 2 Consider the two dimensional Oseen operator O2(w) = O2(v,q) := 140

(cv− ν Δv+ b ·∇v+∇q,∇ · v), where b is the convection velocity. If b = 0, then 141

we obtain the Stokes operator S2(w) = S2(v,q) := (cv− ν Δv + ∇q,∇ · v). If 142

R =Q(b1,b2,c,ν)[∂x,∂y], Rx =Q(b1,b2,c,ν)(∂y)[∂x] =Q(b1,b2,c,ν,∂y)[∂x] and 143

O2 =

⎛
⎝−ν (∂ 2

x + ∂ 2
y )+ b1 ∂x + b2 ∂y + c 0 ∂x

0 −ν (∂ 2
x + ∂ 2

y )+ b1 ∂x + b2 ∂y + c ∂y

∂x ∂y 0

⎞
⎠ 144

145
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the matrix of PD operators associated with O2, i.e., O2(w) = O2 w, then the Smith 146

normal form of O2 ∈ R3×3
x is defined by: 147

SO2 =

⎛
⎝1 0 0

0 1 0
0 0 Δ L2

⎞
⎠ , L2 = c−ν Δ +b ·∇. (6)

From the form of SO2 we can deduce that the two-dimensional Oseen equations can 148

be mainly characterized by the scalar fourth order PD operator Δ L2. This is not 149

surprising since the stream function formulation of the Oseen equations for d = 2 150

gives the same PDE for the stream function. 151

Remark 2. The above applications of Smith normal forms suggest that one should 152

design an optimal domain decomposition method for the biharmonic operator Δ 2
153

(resp., L2 Δ ) in the case of linear elasticity (resp., the Oseen/Stokes equations) for 154

the two-dimensional problems, and then transform it back to the original system. 155

3 An Optimal Algorithm for the Biharmonic Operator 156

We give here an example of Neumann-Neumann methods in its iterative version 157

for Laplace and biLaplace equations. For simplicity, consider a decomposition of 158

the domain Ω = R
2 into two half planes Ω1 = R

− ×R and Ω2 = R
+×R. Let the 159

interface {0}×R be denoted by Γ and (ni)i=1,2 be the outward normal of (Ωi)i=1,2. 160

We consider the following problem: 161

−Δu = f in R
2, |u(x)| → 0 for |x| → ∞. (7)

and the following Neumann-Neumann algorithm applied to problem (7): 162

Let un
Γ be the interface solution at iteration n. We obtain un+1

Γ from un
Γ by the follow- 163

ing iterative procedure 164

{−Δui,n = f , in Ωi,
ui,n = un

Γ , on Γ ,

⎧⎨
⎩
−Δ ũi,n = 0, in Ωi,
∂ ũi,n

∂ni
= −1

2

(
∂u1,n

∂n1
+

∂u2,n

∂n2

)
, on Γ ,

(8)

and then un+1
Γ = un

Γ + 1
2

(
ũ1,n + ũ2,n

)
. 165

This algorithm is optimal in the sense that it converges in two iterations. 166

Since the biharmonic operator seems to play a key role in the design of a new 167

algorithm for both Stokes and elasticity problem in two dimensions, we need to build 168

an optimal algorithm for it. We consider the following problem: 169

Find φ : R2→R such that: 170

Δ 2φ = g in R
2, |φ(x)| → 0 for |x| → ∞. (9)

and the following “Neumann-Neumann” type algorithm applied to (9): 171

Let (φn
Γ ,Dφn

Γ ) be the interface solution at iteration n (suppose also that φ0
Γ = 172
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φ0|Γ , Dφ0
Γ = (Δφ0)Γ ). We obtain (φn+1

Γ ,Dφn
Γ ) from (φn

Γ ,Dφn
Γ ) by the following iter- 173

ative procedure 174

⎧⎨
⎩
−Δ 2φ i,n = f , in Ωi,
φ i,n = φn

Γ , on Γ ,
Δφ i,n = Dφn

Γ , on Γ ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δ 2φ̃ i,n = 0, in Ωi,
∂ φ̃ i,n

∂ni
= −1

2

(
∂φ1,n

∂n1
+

∂φ2,n

∂n2

)
, on Γ ,

∂Δφ̃ i,n

∂ni
= −1

2

(
∂Δφ1,n

∂n1
+

∂Δφ2,n

∂n2

)
, on Γ ,

(10)

and then φn+1
Γ = φn

Γ + 1
2

(
φ̃1,n + φ̃2,n

)
, Dφn+1

Γ = Dφn
Γ + 1

2

(
Δ̃φ1,n + Δ̃φ2,n

)
. 175

176

This is a generalization of the Neumann-Neumann algorithm for the Δ operator 177

and is also optimal (the proof can be found in [8]). 178

Now, in the case of the two dimensional linear elasticity, φ represents the sec- 179

ond component of the vector of Smith variables, that is, φ = (ws)2 = (Fu)2, where 180

u = (u,v) is the displacement field. Hence, we need to replace φ with (Fu)2 into the 181

algorithm for the biLaplacian, and then simplify it using algebraically admissible op- 182

erations. Thus, one can obtain an optimal algorithm for the Stokes equations or linear 183

elasticity depending on the form of F . From here comes the necessity of choosing 184

in a proper way the matrix F (which is not unique), used to define the Smith normal 185

form, in order to obtain a “good” algorithm for the systems of PDEs from the optimal 186

one applied to the biharmonic operator. In [7] and [8], the computation of the Smith 187

normal forms for the Euler equations and the Stokes equations was done by hand or 188

using the Maple command Smith. Surprisingly, the corresponding matrices F have 189

provided good algorithms for the Euler equations and the Stokes equations even if 190

the approach was entirely heuristic. 191

4 Relevant Smith Variables: A Completion Problem 192

The efficiency of our algorithms heavily relies on the simplicity of the Smith vari- 193

ables, that is on the entries of the unimodular matrix F used to compute the Smith 194

normal form of the matrix A. In this section, within a constructive algebraic analysis 195

approach, we develop a method for constructing many possible Smith variables. Tak- 196

ing into account physical aspects, the user can then choose the simplest one among 197

them. We are going to show that the problem of finding Smith variables can be re- 198

duced to a completion problem. First of all, we very briefly introduce some notions 199

of module theory [15]. 200

Given a ring R (e.g., R = k[∂1, . . . ,∂d ], where k is a field (e.g., Q, R, C)), the 201

definition of a R-module M is similar to the one of a vector space but where the 202

scalars are taken in the ring R and not in a field as for vector spaces. If A ∈ Rp×p, 203

then the kernel of the R-linear map (R-homomorphism) .A : R1×p −→ R1×p, defined 204

by (.A)(r) = rA, is the R-module defined by: 205

kerR(.A) = {r ∈ R1×p | rA = 0}. 206
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The image imR(.A) of .A, simply denoted by R1×p A, is the R-module defined by 207

all the R-linear combinations of the rows of A. The cokernel cokerR(.A) of .A is 208

the factor R-module defined by cokerR(.A) = R1×p/(R1×p A). To simplify the no- 209

tation, we shall denote this module by M. M is nothing more than the R-module 210

of the row vectors of R1×p modulo the R-linear combinations of rows of A. Let 211

R1 = k(∂2, . . . ,∂d)[∂1], Ri = k(∂1, . . . ,∂i−1,∂i+1, . . . ,∂d)[∂i], i = 2, . . . ,d − 1, and 212

Rd = k(∂1, . . . ,∂d−1)[∂d ] be the polynomial rings in ∂i with coefficients in the field 213

of rational functions in all other PD operators. 214

Since the R-module M = R1×p/(R1×p A) plays a fundamental role in what fol- 215

lows, let us describe it in terms of generators and relations. Let {fj} j=1,...,p be the 216

standard basis of R1×p, namely fj is the row vector of R1×p defined by 1 at the jth 217

position and 0 elsewhere, and m j the residue class of fj in M. Then, {m j} j=1,...,p 218

is a family of generators of the R-module M, i.e., for any m ∈ M, then there ex- 219

ists r = (r1, . . . ,rp) ∈ R1×p such that m = ∑p
j=1 r j m j [3]. The family of generators 220

{m j} j=1,...,p of M satisfies the relations ∑p
j=1 Ai j m j = 0 for all i = 1, . . . , p [3]. For 221

more details, see [3, 15]. 222

Let E, F ∈ GLp(Ri) be two unimodular matrices such that A = E S F , where 223

S = diag(1, . . . ,1,dr+1, . . . ,dq) is the Smith normal form of A. Moreover, let us split 224

F ∈ GLp(Ri) into two parts row-wise, i.e., F = (FT
1 FT

2 )T , where F1 ∈ Rr×p
i , F2 ∈ 225

R(p−r)×p
i , and r is the number of ones in S. Then: 226

A = E S F ⇔
(

F1

S2 F2

)
= E−1 A, S2 = diag(dr+1, . . . ,dp). (11)

Cleaning the denominators of the entries of S2 (resp., F2), we can assume without 227

loss of generality that the d j’s (resp., the entries of F2) belong to R. Then, (11) shows 228

that the jth row of F2 must be an element of the Ri-module Mi = R1×p
i /(R1×p

i A) an- 229

nihilated by d j. Consequently, the possible F2’s can be found by computing a family 230

of generators of the Ri-modules annMi(d j) = {m∈Mi | d j m = 0} for j = r+1, . . . , p. 231

These Ri-modules can be computed by means of Gröbner basis techniques (see, e.g., 232

[6]). Hence, we get S2 F2 = G2 A for some G2 ∈ R(p−r)×p
i . Then, for each choice for 233

F2, we are reduced to the following completion problem: 234

Find F1 ∈ Rr×p
i such that F = (FT

1 FT
2 )T ∈ GLp(Ri) and F1 = G1 A

for some G1 ∈ Rr×p
i .

(12)

Example 3 Let R = Q(λ ,μ)[∂x,∂y,∂z] be the commutative polynomial ring of PD 235

operators in ∂x, ∂y and ∂z with coefficients in the field Q(λ ,μ), 236

A =

⎛
⎝−(λ + μ)∂ 2

x − μ Δ −(λ + μ)∂x ∂y −(λ + μ)∂x ∂z

−(λ + μ)∂x ∂y −(λ + μ)∂ 2
y − μ Δ −(λ + μ)∂y ∂z

−(λ + μ)∂x ∂z −(λ + μ)∂y ∂z −(λ + μ)∂ 2
z − μ Δ

⎞
⎠ ∈ R3×3

237

the matrix of PD operators defining the elastostatic equations in R
3, where Δ = ∂ 2

x + 238

∂ 2
y + ∂ 2

z , and the associated R-module M = R1×3/(R1×3 A). The Smith normal form 239
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of A with respect to x is given by S = diag(1,Δ ,Δ 2). With the above notations, we get 240

r = 1 and S2 = diag(Δ ,Δ 2)∈ R2×2. Let Rx =Q(λ ,μ)(∂y,∂z)[∂x], F1 ∈ R1×3
x and F2 ∈ 241

R2×3
x . Then, the first (resp. second) row of F2 must be an element of the Rx-module 242

Mx = R1×3
x /(R1×3

x A) annihilated by Δ ∈ R (resp. Δ 2 ∈ R). Using the OREMODULES 243

package [4], we find that families of generators of annMx(Δ) and annMx (Δ 2) are 244

respectively defined by the residue classes of the rows of the following matrices in 245

Mx: 246

AΔ =

⎛
⎜⎜⎝

0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0
∂x ∂y ∂z

⎞
⎟⎟⎠ , AΔ 2 = I3. 247

That simply means that a family of generators of annMx(Δ) is given by the divergence 248

and the curl of the displacement field and for annMx(Δ 2) by the components of the 249

displacement fields. Now, the first (resp., second) row of F2 must be a Rx-linear 250

combination of the rows of AΔ (resp., AΔ 2). We thus have several choices and for 251

each of them, we are reduced to a completion problem (12). For instance, choosing 252

the first row of AΔ (resp., the third row of AΔ 2 ) as first (resp., second) row of F2, 253

namely 254

F2 =

(
0 −∂z ∂y

0 0 1

)
, 255

we then have to find a row vector F1 ∈ R1×3
x such that F1 = G1 A for some G1 ∈ R1×3

x 256

and F = (FT
1 FT

2 )T ∈ GL3(Rx). If such a row vector F1 exists, then the matrix 257

F = (FT
1 FT

2 )T provides a good choice of Smith variables. 258

We first give two necessary conditions for a choice of F2 to provide a solution of the 259

completion problem (straightforward from the relation A = E S F): 260

Lemma 1. With the above notations, given F2 ∈ R(p−r)×p, necessary conditions for 261

the solvability of the completion problem (12) are: 262

1. F2 admits a right inverse over Ri, i.e. ∃ S2 ∈ Rp×(p−r)
i : F2 S2 = Ip−r. 263

2. There exists a matrix G2 ∈ R(p−r)×p
i such that S2 F2 = G2 A. 264

Since Ri is a principal ideal domain (namely, every ideal of Ri can be generated 265

by an element of Ri), Condition 1 of Lemma 1 is equivalent to the condition that 266

the Ri-module cokerRi(.F2) = R1×p
i /(R1×(p−r)

i F2) is free of rank r, i.e. cokerRi(.F2) 267

admits a basis of cardinality r [3, 15]. It is equivalent to the existence of two matrices 268

Q2 ∈ Rp×r
i and T2 ∈ Rr×p

i such that kerRi(.Q2) = R1×(p−r)
i F2 and T2 Q2 = Ir [3]. Such 269

a matrix Q2 is called an injective parametrization of cokerRi(.F2). Matrices Q2 and 270

T2 can be computed by Gröbner basis techniques [3]. The corresponding algorithms 271

are implemented in the OREMODULES package [4]. The next theorem characterizes 272

the solvability of the completion problem (12). 273
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Theorem 2. Let F2 ∈ R(p−r)×p admit a right inverse over Ri and satisfy S2 F2 = G2 A 274

for some G2 ∈ R(p−r)×p
i . If Q2 is an injective parametrization of the free Ri-module 275

cokerRi(.F2) of rank r, and T2 ∈ Rr×p
i a left inverse of Q2, then a necessary and 276

sufficient condition for the existence of a solution of the completion problem (12) is 277

the existence of two matrices H ∈Rr×(p−r)
i and G1 ∈Rr×p

i such that T2 =G1 A−H F2. 278

Then, F1 = T2 +H F2 = G1 A is a solution of the completion problem (12), i.e., F = 279

((T2+H F2)
T FT

2 )T ∈GLp(Ri) is such that A=E S F for some E ∈GLp(Ri), where 280

S is the Smith normal form of A. 281

From the explanations above, we deduce the following algorithm that, given 282

A, S2 = diag(dr+1, . . . ,dp), and a choice for F2 computed from the calculations of 283

annMi(d j) for d j ∈ R, find (if it exists) a completion of F2. The following algorithm

Input: A ∈ Rp×p, S2 ∈ R(p−r)×(p−r) and F2 ∈ R(p−r)×p.
Output: A completion F = (FT

1 FT
2 )T of F2 or “No completion exists”.

1. Compute a right inverse of F2 over Ri;
2. If no right inverse exists, then RETURN “No completion exists”, Else

(a) Factorize S2 F2 with respect to A over Ri;
(b) If no factorization exists, then RETURN “No completion exists”, Else

i. Compute an injective parametrization Q2 of cokerRi(.F2);
ii. Compute a left inverse T2 of Q2 over Ri;

iii. Factorize T2 with respect to (FT
2 AT )T over Ri;

iv. If no factorization exists, then RETURN “No completion exists”, Else

note T2 = (−H G1)

(
F2

A

)
and RETURN F =

(
T2 +H F2

F2

)
.

284

was implemented in Maple based on the OREMODULES package. 285

Example 4 Consider again the elastostatic equations introduced in Example 3. For 286

the choice of F2 given at the end of Example 3, our implementation succeeds in 287

finding a completion and we get the following completion of F2: 288

F =

⎛
⎜⎝

1 − ∂x ∂y

∂ 2
y +∂ 2

z
− ∂x ((λ+2 μ) (∂ 2

x +∂ 2
y )+(2λ+3 μ)∂ 2

z )

(λ+μ)∂z (∂ 2
y +∂ 2

z )

0 −∂z ∂y

0 0 1

⎞
⎟⎠ ∈GL3(Rx). 289

For more details and explicit computations, we refer the reader to [5]. 290

5 Reduction of the Interface Conditions 291

In the algorithms presented in the previous sections, we have equations in the do- 292

mains Ωi and interface conditions on Γ obtained heuristically. We need to find an 293
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automatic way to reduce the interface conditions with respect to the equations in the 294

domains. In this section, we show how symbolic computations can be used to per- 295

form such reductions. The naïve idea consists in gathering all equations and compute 296

a Gröbner basis [6]. However, one has to keep in mind that the independent variables 297

do not play the same role. More precisely, the interface conditions cannot be dif- 298

ferentiated with respect to x since the border of the interface is defined by x = 0. 299

Consequently, we have developed and implemented an alternative method in Maple 300

using the OREMODULES package, which can be sketched as follows: 301

1. Compute a Gröbner basis of the polynomial equations inside the domain for a 302

relevant monomial order; 303

2. Compute the normal forms of the interface conditions with respect to the latter 304

Gröbner basis; 305

3. Write these normal forms in the jet notations with respect to the independent 306

variable x, i.e., rewrite the derivatives ∂ i
x yk of the dependent variables yk as new 307

indeterminates yk,i; 308

4. Perform linear algebra manipulations to simplify the normal forms. 309

For more details and explicit computations, we refer the reader to [5]. 310

6 Some Optimal Algorithms 311

After performing the completion and the reduction of the interface conditions, we 312

can give examples of optimal algorithms (elasticity and Stokes equations). 313

Example 5 Consider the elasticity operator: 314

Ed u =− div σ (u), σ(u) = μ (∇u+(∇u)T )+λ div u Id . 315

If d = 2, then the completion algorithm gives two possible choices for F : 316

F =

(
− ∂x (μ ∂ 2

x −λ ∂ 2
y )

(λ+μ)∂ 3
y

1

1 0

)
, F =

(
1 − (λ+μ)∂x ((3 μ+2λ )∂ 2

y +(2 μ+λ )∂ 2
x )

∂ 3
y

0 1

)
. (13)

By replacing φ into the Neumann-Neumann algorithm for the biLaplacian by (Fu)2 317

and re-writing the interface conditions, using the equations inside the domain like in 318

[8], we get two different algorithms for the elasticity system. Note that, in the first 319

case of (13), φ = u, and, in the second one, φ = v (where u = (u,v)). Below, we shall 320

write in detail the algorithm in the second case. To simplify the writing, we denote 321

by uτ = u · τ , un = u ·n, σnn(u) = (σ(u) ·n) ·n, σnτ(u) = (σ(u) ·n) · τ . 322

Let (un
Γ ,σ

n
Γ ) be the interface solution at iteration n (suppose also that u0

Γ = (u0
τ)|Γ , 323

σ0
Γ = (σsnn(u0))|Γ ). We obtain (un+1

Γ ,σn
Γ ) from (un

Γ ,σ
n
Γ ) by the following iterative 324

procedure 325
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⎧⎨
⎩

E2(ui,n) = f , in Ωi,

u1,n
τi = un

Γ , on Γ ,
σnini(u

i,n) = σn
Γ , on Γ ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E2(ũi,n) = 0, in Ωi,

ũi,n
τi = −1

2

(
u1,n

n1
+u2,n

n2

)
, on Γ ,

σniτi(ũ
i,n) = −1

2

(
σn1τ1(u

1,n)+σn2τ2(u
2,n)
)
,

on Γ ,

(14)

and un+1
Γ = un

Γ + 1
2

(
ũ1,n

τ1 + ũ2,n
τ2

)
, σn+1

Γ = σn
Γ + 1

2

(
σn1n1(ũ

1,n)+σn2n2(ũ
2,n)
)
. 326

Remark 3. We found an algorithm with a mechanical meaning: Find the tangential 327

part of the normal stress and the normal displacement at the interface so that the nor- 328

mal part of the normal stress and the tangential displacement on the interface match. 329

This is very similar to the original Neumann-Neumann algorithm, which means that 330

the implementation effort of the new algorithm from an existing Neumann-Neumann 331

is negligible (the same type of quantities – displacement fields and efforts – are im- 332

posed at the interfaces), except that the new algorithm requires the knowledge of 333

some geometric quantities, such as normal and tangential vectors. Note also that, 334

with the adjustment of the definition of tangential quantities for d = 3, the algorithm 335

is the same, and is also similar to the results in [8]. 336

7 Conclusion 337

All algorithms and interface conditions are derived for problems posed on the whole 338

space, since for the time being, this is the only way to treat from the algebraic point 339

of view these problems. The effect of the boundary condition on bounded domains 340

cannot be quantified with the same tools. All the algorithms are designed in the 341

PDE level and it is very important to choose the right discrete framework in order 342

to preserve the optimal properties. For example, in the case of linear elasticity a 343

good candidate would be the TDNNS finite elements that can be found in [14]. The 344

implementation and the impact of the discretizations on the algorithms is an ongoing 345

work. 346
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