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1 Introduction 9

It is very natural to solve time dependent problems with Domain Decomposition 10

Methods by using an implicit scheme for the time variable and then applying a clas- 11

sical iterative domain decomposition method at each time step. This is however not 12

what the Schwarz Waveform Relaxation (SWR) methods do. The SWR methods 13

are a combination of the Schwarz Domain Decomposition methods, see [10], and 14

the Waveform Relaxation algorithm, see [7]. Combined, one obtains a new method 15

which decomposes the domain into subdomains on which time dependent problems 16

are solved. Iterations are then introduced, where communication between subdo- 17

mains is done at artificial interfaces along the whole time window. 18

This new approach has been introduced by Bjørhus [1] for hyperbolic problems 19

with Dirichlet boundary conditions and was analyzed for the heat equation by Gan- 20

der and Stuart [5]. Giladi and Keller [6] analyzed this same approach applied to the 21

advection diffusion equation with constant coefficients. For the wave equation and 22

SWR see [3] in which they treat the one-dimensional case with overlapping sub- 23

domains and for the n-dimensional case [4], again with overlap. In this paper, we 24

analyze for the first time the SWR algorithm applied to the time domain Maxwell 25

equations. 26

2 Maxwell Equations and the Schwarz Waveform Relaxation 27

Algorithm 28

The global domain Ω is decomposed into non overlapping subdomains Ω̃i. We de- 29

note by Ωi the domain Ω̃i enlarged by a band of width δ inside of Ω . The part of 30

∂Ωi in Ω̃ j is denoted Γi j, i.e. Γi j := ∂Ωi ∩ Ω̃ j. If Ωi possesses a part of the bound- 31

ary of the global domain Ω , we denote it by Γi0 := ∂Ωi ∩∂Ω . The SWR algorithm 32

with characteristic transmission conditions for the time domain Maxwell equations 33

is given by 34
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ε∂tEi,n +∇×Hi,n−σEi,n = J, Ωi× (0,T),
μ∂tHi,n +∇×Ei,n = 0, Ωi× (0,T),

Bni(E
i,n,Hi,n) = 0, Γi0× (0,T ),

(Ei,n,Hi,n)(x,0) = (E0,H0), Ωi,
Bni(E

i,n,Hi,n) = Bni(E
j,n−1,H j,n−1), Γi j× (0,T ),

(1)

where ε is the electric permittivity, μ the magnetic permeability and σ the conductiv- 35

ity. The indices i and j, always different, range over the indices of all subdomains, i.e. 36

i, j ∈ {1,2, . . . , I} with i �= j and I being the number of subdomains. In the algorithm 37

ni is the unit outward normal vector to Ωi. The impedance 38

Bn(E,H) :=
E
Z
×n+n× (H×n), 39

plays the role of the Dirichlet value for this hyperbolic system [2] and corresponds 40

to the inward characteristic variables of the Maxwell equations. The last line of (1), 41

which is called the characteristic transmission condition, establishes how the subdo- 42

mains communicate with each other. 43

3 Convergence in a Finite Number of Steps 44

From now on, we restrict our analysis to the specific situation where Ω = R
3 which 45

is subdivided into two subdomains 46

Ω1 = (−∞,L]×R
2, Ω2 = [0,+∞)×R

2. (2)

The artificial boundaries are therefore given by Γ12 = {L}×R
2 and Γ21 = {0}×R

2
47

with an overlap of width L. We also choose the coefficients ε , μ and σ to be constant. 48

Maxwell equations describe the motion of electromagnetic waves which prop- 49

agate at finite speed, namely the speed of light in the vacuum. This fact has been 50

proven for a broad class of hyperbolic systems, see for instance [8]; the Maxwell 51

equations are simply one such example. The speed of propagation is given by 52

c := 1/
√εμ , which is constant. 53

Remark 1. The next result also holds when the coefficients are non constant and with 54

a domain Ω decomposed into many subdomains Ωi having a more complicated ge- 55

ometry and non constant overlap width. 56

Proposition 1 (Convergence in a finite number of steps). The SWR algorithm (1) 57

for two subdomains defined in (2) with overlap L converges as soon as the number 58

of iterations n satisfies 59

n >
Tc
L
, 60

where T is the length of the time interval and c= 1/
√εμ is the speed of propagation. 61



Page 275

UN
CO

RR
EC

TE
D

PR
O
O
F

Time Domain Maxwell Equations Solved with SWR

Proof. The Maxwell equations are linear and thus allow us to restrict our attention to 62

the error equations, i.e. (1) where J = 0 and (E0,H0) = 0. We prove in the following 63

that for t < tn := n L
c , 64

Supp(Ei,n+1,Hi,n+1)(t) = /0, t < tn. (3)

The error of the Maxwell equations is non-zero at iteration one only because the 65

initial guesses (Ei,0,Hi,0) are non-zero on the artificial boundaries Γi j. The speed 66

of propagation is finite and thus the error propagates from the artificial boundaries 67

inside the domain Ωi. For the first iteration we have that 68

Supp(Ei,1,Hi,1)(t)⊂ {x ∈Ωi|dist(x,Γi j)< tc, j �= i, j ∈ {1,2}}, 69

since after a time t, the electromagnetic wave can only have propagated on a distance 70

tc from the artificial boundaries. The overlap is of width L, hence (E1,1,H1,1)(0,y,z, t) 71

and (E2,1,H2,1)(L,y,z, t) are zero unless tc> L, i.e. unless the time is greater or equal 72

to t1 := L
c . 73

For the next iteration we have that the trace of (E1,1,H1,1) at Γ21 and (E2,1,H2,1) 74

at Γ12 are zero for times t < t1, i.e. Bni(E
j,n−1,H j,n−1) = 0 at Γi j for n = 2 and t < t1. 75

Therefore, when solving for (Ei,2,Hi,2) we see that for t < t1, we have zero boundary 76

conditions and zero initial condition, hence 77

(Ei,2,Hi,2)(x, t) = 0, for t < t1. 78

For times t > t1, we have a similar result as for the first iteration, namely 79

Supp(Ei,2,Hi,2)(t)⊂ {x ∈Ωi|dist(x,Γi j)< (t− t1)c, j �= i, j ∈ {1,2}}. 80

We define t2 := L
c + t1 = 2t1, such that Supp(Ei,2,Hi,2)(t) = 0 on Γji for t < t2. And 81

so forth for the following iterations, which proves (3). 82

Hence, if T , the length of the time window, is finite and tn := n L
c > T , the solution 83

(Ei,n+1,Hi,n+1) is zero and the algorithm has converged. 84

4 Convergence of the SWR Algorithm 85

Under the same setting (2) as in previous section, we prove that the SWR algorithm 86

(1) also has a contraction factor. 87

Theorem 1. The convergence factor of the classical Schwarz Waveform Relaxation 88

algorithm (1) in the frequency domain with domain decomposition (2) is given by 89

ρ(s,ky,kz,L,σ) =

∣∣∣∣∣
√
|k|2 + μs2ε + μsσ − s

√με√
|k|2 + μs2ε + μsσ + s

√με
e−L
√
|k|2+μs2ε+μsσ

∣∣∣∣∣ , 90

where s is the Laplace variable, ℜ(s)≥ 0, and |k|2 = k2
y +k2

z is the sum of the squares 91

of the Fourier frequencies in the y and z directions. 92
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Proof. We consider the error equations for which J and the initial condition are zero. 93

We first apply the Laplace transform to (1) which transforms the time t into a com- 94

plex frequency s with ℜ(s)≥ 0 and transforms the derivative with respect to t into a 95

multiplication by s. Then we apply a Fourier transform in the y and z directions and 96

obtain, 97

∂
∂x

⎡
⎢⎢⎣

Ě2

Ě3

Ȟ2

Ȟ3

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

0 0 − kykz
εs+σ

k2
y

εs+σ + μs

0 0 − k2
z

εs+σ − μs kykz
εs+σ

kykz
μs − k2

y
μs − (εs+σ) 0 0

k2
z

μs + εs+σ − kykz
μs 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Ě2

Ě3

Ȟ2

Ȟ3

⎤
⎥⎥⎦= 0 (4)

For components Ě1 and Ȟ1, we have two algebraic equations 98

−εsĚ1 + ikyȞ3− ikzȞ2−σ Ě1 = 0,

μsȞ1 + ikyĚ3− ikzĚ2 = 0.
99

The solution of (4) is given by a linear combination of the eigenvectors times an 100

exponential of the corresponding eigenvalue, 101

(Ě1,n
2 , Ě1,n

3 , Ȟ1,n
2 , Ȟ1,n

3 )T = (αn
1 v1 +αn

2 v2)e
−λ (x−L) + (αn

3 v3 +αn
4 v4)e

λ (x−L),

(Ě2,n
2 , Ě2,n

3 , Ȟ2,n
2 , Ȟ2,n

3 )T = (β n
1 v1 +β n

2 v2)e
−λ x +(β n

3 v3 +β n
4 v4)e

λ x.
(5)

where λ =
√
|k|2 + μs2ε + μsσ and the eigenvalues are λ1,2 = −λ and λ3,4 = λ . 102

The corresponding eigenvectors are 103

v1 =

⎛
⎜⎜⎜⎝

kykz
λ (εs+σ)

k2
z+μs2ε+μsσ

λ (εs+σ)

1
0

⎞
⎟⎟⎟⎠ ,v2 =

⎛
⎜⎜⎜⎝
− k2

y+μs2ε+μsσ
λ (εs+σ)

− kykz
λ (εs+σ)

0
1

⎞
⎟⎟⎟⎠ ,

v3 =

⎛
⎜⎜⎜⎝
− kykz

λ (εs+σ)

− k2
z+μs2ε+μsσ

λ (εs+σ)

1
0

⎞
⎟⎟⎟⎠ ,v4 =

⎛
⎜⎜⎜⎝

k2
y+μs2ε+μsσ

λ (εs+σ)
kykz

λ (εs+σ)

0
1

⎞
⎟⎟⎟⎠ .

(6)

The speed of propagation is finite. The wave of the error equations propagates start- 104

ing from the interfaces. Therefore, no wave is coming from the infinite boundary 105

and then the growing exponential term of (5) is not present in the solution, i.e. 106

α1 = α2 = β3 = β4 = 0. Hence, 107

(Ě1,n
2 , Ě1,n

3 , Ȟ1,n
2 , Ȟ1,n

3 )T = (αn
3 v3 +αn

4 v4)e
λ (x−L),

(Ě2,n
2 , Ě2,n

3 , Ȟ2,n
2 , Ȟ2,n

3 )T = (β n
1 v1 +β n

2 v2)e
−λ x.

(7)
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To determine the values of αi and βi, we need to use the transmission conditions. 108

They are, for the first subdomain, Bn(Ě
1,n
,Ȟ

1,n
) = Bn(Ě

2,n−1
,Ȟ

2,n−1
) with n = 109

(1,0,0)T , i.e. 110[
1
Z Ě1,n

3 + Ȟ1,n
2

− 1
Z Ě1,n

2 + Ȟ1,n
3

]
=

[
1
Z Ě2,n−1

3 + Ȟ2,n−1
2

− 1
Z Ě2,n−1

2 + Ȟ2,n−1
3 .

]
111

We substitute the values of the electric and magnetic fields by their values given in 112

(7). This gives an equation relating αααn = (αn
3 ,α

n
4 )

T and βββ n = (β n
1 ,β

n
2 )

T , 113

A1αααn = A2e−λ Lβββ n−1, (8)

where matrices A1 and A2 are given by 114

A1 =

[−(k2
z + μs2ε + μsσ)+Zλ (εs+σ) kykz

kykz −(k2
y + μs2ε + μsσ)+Zλ (εs+σ)

]
,

A2 =

[
k2

z + μs2ε + μsσ +Zλ (εs+σ) −kykz

−kykz k2
y + μs2ε + μsσ +Zλ (εs+σ)

]
.

(9)
We do the same computations for the second subdomain for which we have the trans- 115

mission conditions B−n(Ê
2,n
,Ĥ

2,n
) = B−n(Ê

1,n−1
,Ĥ

1,n−1
), and obtain 116

A1βββ n = A2e−λ Lαααn−1. (10)

We isolate αααn and βββ n in (8) and (10) and iterate one more time to obtain 117

αααn = (A−1
1 A2)

2e−2λ Lαααn−2, βββ n = (A−1
1 A2)

2e−2λ Lβββ n−2. (11)

The parameters αααn and βββ n characterize completely the solution of (4), therefore 118

the effective contraction factor after two iterations is given by the spectral radius of 119

(A−1
1 A2)

2e−2λ L. This matrix has eigenvalues 120

ν1 :=

(
λ − s

√εμ
λ + s

√εμ

)2

e−2λ L, ν2 :=

(
λ − s

√εμ−Zσ
λ + s

√εμ +Zσ

)2

e−2λ L. 121

The largest eigenvalue in modulus is given by the first one which concludes the proof. 122

Corollary 1. The SWR algorithm (1) with non-zero conductivity, σ > 0, converges 123

in the L2 norm, i.e. if we denote by ei,n := (Ei,n
2 ,Ei,n

3 ,Hi,n
2 ,Hi,n

3 ), then 124

||ei,n(Γi j, t)||2 −→ 0 (n→+∞), 125

where Γi j is defined in (2) and || · ||2 denotes the norm in L2(0,T ;L2(R2)). 126

Proof. We use the notation ěi,n = (Ěi,n
2 , Ěi,n

3 , Ȟi,n
2 , Ȟi,n

3 ) for the solution in the Fourier 127

Laplace variables. From relations (11) with the notation R := A−1
1 A2e−λ L and iterat- 128

ing 2n times we obtain 129
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ααα2n = R2nααα0, βββ 2n = R2nβββ 0. 130

The matrix R has eigenvalues ν1 and ν2 and therefore can be diagonalized using 131

the matrix of eigenvectors S, i.e. D = S−1RS. The following argument, for the first 132

subdomain Ω1, is similar also for the second one. 133

We define γγγn := S−1αααn for all n = 0,1, . . ., and from (7) we can reconstruct the 134

solution of ě1,2n from the initial iterate, 135

ě1,2n(x,ky,kz,s) = eλ (x−L)[v3 v4]R
2nααα0 = eλ (x−L)[v3 v4]SS−1R2nSγγγ0

= eλ (x−L)[v3 v4]SD2nγγγ0.
136

The diagonal matrix is of the form D = diag(ν1,ν2), hence we obtain a new form for 137

the solution evaluated at x = L, 138

ě1,2n(L,ky,kz,s) = ν2n
1 γ0

1 w1 +ν2n
2 γ0

2 w2, (12)

where [w1 w2] := [v3 v4]S. 139

Finally Theorem 7.23 of [9] shows that the limit ěi,n(L,ky,kz,s) when s = ξ + 140

iω → iω is the Fourier transform of ei,n in the y, z and t variables. Therefore the 141

Plancherel theorem applies and 142

||ei,n(L,y,z, t)||2 = ||ěi,n(L,ky,kz, iω)||2, 143

which implies by (12) 144

||ei,n(L,y,z, t)||2 = ||ν2n
1 γ0

1 w1 +ν2n
2 γ0

2 w2||2 145

By the dominated convergence theorem we can insert the limit, when n goes to 146

infinity, into the norm and, since limn→∞ νi is almost everywhere zero for i = 1,2, 147

it concludes the proof. 148

5 Numerical Experiments 149

For this section we restrict the geometry of the global domain to Ω = [0,1]3 and to 150

subdomains 151

Ω1 = [0,
1
2
+ 2Δx]× [0,1]× [0,1], Ω2 = [

1
2
,1]× [0,1]× [0,1], 152

where Δx is the spatial mesh size in the direction x. We consider a time window 153

of length T = 1. The parameters ε , μ and σ are constant and equal to one. On the 154

physical domain we set boundary conditions for perfectly conducting medium. 155

The discretization is done with the Yee scheme which is explicit in time. We 156

set a global grid on the whole domain Ω having 24 grid points in each direction x, 157

y and z. The overlap is of 2 mesh points. The number of grid points for the time 158

variable is N = 144 which guarantees that the CFL condition is satisfied. Since the 159



Page 279

UN
CO

RR
EC

TE
D

PR
O
O
F

Time Domain Maxwell Equations Solved with SWR

domain is bounded, only a finite number of discrete frequencies are possible. Since 160

the domain is of width one, the minimum frequency in space is given by kmin = π and 161

the maximum by kmax =
π

Δy . Equivalently for the time frequencies we have ωmax = 162

π
Δ t . Since there is no finite value imposed, we take ωmin = π

2T = π
2 . The discrete 163

frequencies are therefore given by 164

ky,kz ∈ {π ,2π , . . . ,
π

Δy
}, ω ∈ {π

2
,π , . . . ,

π
Δ t
}. 165

From Corollary 1 we have that 166

||ei,n(L,y,z, t)||2 ≤C max
(ky,kz,ω)

|ν1|n, (13)

where the constant C is the maximum over all frequencies of ||γ0
1 w1 +

ν2
ν1

γ0
2 w2||2. 167

We also expect the solution to converge in a finite number of iterations as shown in 168

Fig. 1.
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Fig. 1. The plain blue line is the upper bound in (13), and the dashed line is the error ||E1,n
2 || in

the L2 norm evaluated at the interface x = b with respect to the iterations. The error converges
before the relation of Proposition 1 is satisfied (vertical line)
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