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Summary. Domain decomposition methods were first developed for elliptic problems, taking 9

advantage of the strong regularity of their solutions. In the last two decades, many investiga- 10

tions have been devoted to improve the performance of these methods for elliptic and parabolic 11

problems. The situation is less clear for hyperbolic problems with possible singular solutions. 12

In this paper, we will discuss a nonoverlapping domain decomposition method for nonlinear 13

hyperbolic problems. We use the finite volume method and an implicit version of the Roe 14

approximate Riemann solver, and propose a new interface variable inspired by Dolean and 15

Lanteri [1]. The new variable makes the Schur complement approach simpler and allows the 16

treatment of diffusion terms. Numerical results for the compressible Navier-Stokes equations 17

in various 2D and 3D configurations such as the Sod shock tube problem or the lid driven 18

cavity problem show that our method is robust and efficient. Comparisons of performances on 19

parallel computers with up to 512 processors are also reported. 20

1 Introduction 21

When solving a nonlinear partial differential equation by an implicit scheme, one 22

classically ends by solving a nonlinear algebraic system using a Newton method. 23

At each step of this method we have to solve a linear system A (Uk)Uk+1 = b(Uk). 24

This task is computationally expensive in particular since the matrix A is usually 25

non-symmetric and very ill-conditioned. It is therefore necessary to find an efficient 26

preconditioner. 27

When the size of the system is large (as in the case of 3D computations), the par- 28

allel solution on multiple processors is essential to obtain reasonable computation 29

times. Currently in the thermal hydraulic code, FLICA-OVAP (see [2]), the matrix 30

A and the right hand side b are stored on multiple processors and the system is 31

solved in parallel with a Krylov solver (classical incomplete factorization). Unfor- 32

tunately, the parallel preconditioners of FLICA-OVAP only perform well on a few 33

processors. In contrast, if we want to increase the number of processors these par- 34

allel preconditioners perform poorly. Tests were run on different test cases and led 35

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1__64, © Springer-Verlag Berlin Heidelberg 2013

mailto:thu-huyen.dao@cea.fr
mailto:michael.ndjinga@cea.fr
mailto:frederic.magoules@hotmail.com


Page 574

UN
CO

RR
EC

TE
D

PR
O
O
F

Thu-Huyen Dao, Michael Ndjinga, and Frédéric Magoulès

us to conclude that it is often better not to use these parallel preconditioners, espe- 36

cially for 3D problems. This strategy does not make an optimal use of the available 37

computational power. Hence we seek for more efficient methods to distribute the 38

computations. We study and use a domain decomposition method as an alternative 39

to the classical distribution. 40

The paper is organized as follows. In Sects. 2 and 3, we present the mathematical 41

model and its numerical schemes. In Sect. 4, we first review the domain decomposi- 42

tion method proposed by Dolean and Lanteri [1] based on a Schwarz algorithm. We 43

then introduce a new interface variable which makes the Schur complement approach 44

simpler and allows for the treatment of diffusion terms. Section 5 presents a set of 45

numerical experiments to validate our method, compares it with that of [1] concern- 46

ing the robustness and efficiency and presents the scalability and the performance of 47

different preconditioners. 48

2 Mathematical Model 49

The simplest model of FLICA-OVAP consists of the following three balance laws 50

for the mass, the momentum and the energy: 51

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ρ
∂ t + ∇ ·q = 0

∂q
∂ t + ∇ ·

(
q⊗ q

ρ + pId

)
− νΔ( q

ρ ) = 0

∂ (ρE)
∂ t + ∇ ·

[
(ρE + p) q

ρ

]
− λ ΔT = 0

(1)

where ρ is the density, v the velocity, q = ρv the momentum, p the pressure, ρe the 52

internal energy, ρE = ρe+ ||q||
2

2ρ the total energy, T the absolute temperature, ν the 53

viscosity and λ the thermal conductivity. We close the system (1) by the ideal gas 54

law p = (γ − 1)ρe. For the sake of simplicity, we consider constant viscosity and 55

conductivity, and neglect the contribution of viscous forces in the energy equation. 56

By denoting U = (ρ ,q,ρE)t the vector of conserved variables, the Navier–Stokes 57

system (1) can be written as a nonlinear system of conservation laws: 58

∂U
∂ t

+∇ · (F conv(U))+∇ ·
(
F di f f (U)

)
= 0, (2)

where F conv(U) =

⎛
⎝

q
q⊗ q

ρ + pId

(ρE + p) q
ρ

⎞
⎠ , F di f f (U) =

⎛
⎝ 0
−ν∇( q

ρ )

−λ ∇T

⎞
⎠ . 59

3 Numerical Method 60

The conservation form (2) allows for the definition of weak solutions, which can 61

be discontinuous ones. Discontinuous solutions such as shock waves are of great 62
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importance in transient calculations. In order to correctly capture shock waves, one 63

needs a robust, low diffusive conservative scheme. The finite volume framework is 64

the most appropriate setup to write discrete equations that express the conservation 65

laws at each cell (see [3]). 66

We decompose the computational domain into N disjoint cells Ci with volume 67

vi. Two neighboring cells Ci and Cj have a common boundary ∂Ci j with area si j. We 68

denote N(i) the set of neighbors of a given cell Ci and ni j the exterior unit normal 69

vector of ∂Ci j . Integrating the system (2) over Ci and setting Ui(t) = 1
vi

∫
Ci

U(x, t)dx 70

and Un
i =Ui(nΔ t), the discretized equations can be written: 71

Un+1
i −Un

i

Δ t
+ ∑

j∈N(i)

si j

vi

(−→
Φ conv

i j +
−→
Φ di f f

i j

)
= 0. (3)

with:
−→
Φ conv

i j = 1
si j

∫
∂Ci j

F conv(Un+1) ·ni jds,
−→
Φ di f f

i j = 1
si j

∫
∂Ci j

F di f f (Un+1) ·ni jds. 72

To approximate the convection numerical flux
−→
Φ conv

i j we solve an approximate 73

Riemann problem at the interface ∂Ci j . Using the Roe local linearisation of the fluxes 74

[4], we obtain the following formula: 75

−→
Φ conv

i j =
F conv(Un+1

i )+F conv(Un+1
j )

2
·ni j−D(Un+1

i ,Un+1
j )

Un+1
j −Un+1

i

2
(4)

= F conv(Un+1
i )ni j +A−(Un+1

i ,Un+1
j )(Un+1

j −Un+1
i ), (5)

where D is an upwinding matrix, A(Un+1
i ,Un+1

j ) the Roe matrix and A± = A±D
2 . 76

The choice D = 0 gives the centered scheme, whereas D = |A| gives the upwind 77

scheme. For the Euler equations, we can build A(Un+1
i ,Un+1

j ) explicitly using the 78

Roe averaged state (see [3]). 79

The diffusion numerical flux
−→
Φ di f f

i j is approximated on structured meshes using 80

the formula: 81

−→
Φ di f f

i j = D(
Un+1

i +Un+1
j

2
)(Un+1

j −Un+1
i ) (6)

with the matrix D(U) =

⎛
⎜⎝

0 0 0
νq
ρ2

−ν
ρ Id 0

λ
cv

(
cvT
ρ − ||q||

2

2ρ3

)
q t λ
ρ2cv

− λ
cvρ

⎞
⎟⎠, where cv is the heat 82

capacity at constant volume. 83

3.1 Newton Scheme 84

Finally, since ∑ j∈N(i)F
conv(Un+1

i ).ni j = 0, using (5) and (6) the Eq. (3) of the nu- 85

merical scheme becomes: 86

Un+1
i −Un

i

Δ t
+ ∑

j∈N(i)

si j

vi
{(A−+D)(Un+1

i ,Un+1
j )}(Un+1

j −Un+1
i ) = 0. (7)
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The system (7) is nonlinear, hence we use the following Newton iterative method to 87

obtain the required solutions: 88

δUk+1
i

Δ t
+ ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
](

δUk+1
j − δUk+1

i

)

= −Uk
i −Un

i

Δ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
]
(Uk

j −Uk
i ), (8)

where δUk+1
i =Uk+1

i −Uk
i is the variation of the k-th iterate that approximates the 89

solution at time n+ 1. 90

4 Domain Decomposition Method 91

The principle of the domain decomposition method by Schur complement is to de- 92

compose the global problem into independent subproblems solved on each processor. 93

More precisely, if we want to solve the problem: 94

{ ∂U
∂ t +∇ ·F (U) = 0 in Ω

BU = g on ∂Ω (9)

on a partition of the original domain Ω =∪K
I=1ΩI , defining UI as the restriction of the 95

solution U in the subdomain ΩI , the algorithm of the domain decomposition method 96

is then written as: 97⎧⎪⎨
⎪⎩

∂UI

∂ t
+∇ ·F (UI) = 0 in Ω

BUI = g on ∂Ω ∩∂ΩI

CIUI =CIUJ on ∂ΩI ∩∂Ω j

(10)

where CI is an interface operator which we will clarify later. 98

4.1 Dolean and Lanteri Interface Variable 99

In the article [1], in order to make the subsystem (10) solution independent, Dolean 100

et al introduced a redundant variable ΦDL
i j at the domain interface between two cells 101

i and j : ΦDL
i j = A+

Roe,ni, j
Ui−A−Roe,ni, j

Uj and then defined the orthogonal projectors 102

P± on the eigenvectors subspaces such that 103

P−(Ui,Uj)δφDo
i j = A−Roe,ni, j

δUk+1
j , P+(Ui,Uj)δφDo

i j =−A+
Roe,ni, j

δUk+1
i 104

This strategy can only be applied to the Euler equations (Eq. (2) with no viscosity 105

and heat conductivity terms) using the upwind scheme. In order to include diffusion 106

terms in the model and to use various schemes, we introduce a new interface variable 107

Φi j at the domain interface between two cells i and j: 108

Φi j =Uj−Ui (11)
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4.2 A New Interface Variable 109

In the case where the cell i of the subdomain I is at the boundary and has to commu- 110

nicate with the neighboring subdomains, we can rewrite the system (8) as: 111

δUk+1
i

Δ t
+ ∑

j∈I, j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
](

δUk+1
j − δUk+1

i

)

= −Uk
i −Un

i

Δ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
]
(Uk

j −Uk
i )

− ∑
j �∈I, j∈N(i)

[
(A−+D)(Uk

i ,U
k
j )
]

δφi j

By defining UI = (U1, . . . ,Um)
t the unknown vector of the subdomain I and 112

δφIJ = (δφi j)i∈I, j∈J, j∈N(i) (12)

and by denoting P = A−+D, we can write the linear system as: 113

A (U k
I )δU k+1

I = bI(U
n,U k)− ∑

J∈N(I)

P(U k
I ,U

k
J )δφIJ (13)

By taking into account Eqs. (11)–(13), we can build an extended system that distin- 114

guishes the internal unknowns from the interface ones: 115

⎛
⎜⎜⎜⎜⎝

A1 0 . . . . . . P1

0 A2 0 . . . P2

. . . . . . . . . . . . . . .
0 0 . . . AN PN

M1 . . . . . . MN I

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δU1

δU2

. . .
δUN

δΦ

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

b1

b2

. . .
bN

bφ

⎞
⎟⎟⎟⎟⎠ (14)

where AI is the matrix that couples the unknowns associated with internal cells of 116

ΩI whereas MI enables us to build δΦ , the interface unknown on all coupling sub- 117

domain interfaces, from the δUI . The internal unknowns can be eliminated in favor 118

of the interface ones to yield the following interface system: 119

Sδφ = bφ (15)

with 120

(Sδφ)IJ = δφIJ +MIJAI
−1 ∑

K∈N(I)

PIKδφIK +MJIAJ
−1 ∑

K∈N(J)

PJKδφJK

(bφ )IJ = MIJAI
−1bI +MJIAJ

−1bJ

The Eq. (15) can be solved by, e.g., GMRES, BICGStab, or the Richardson methods. 121
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5 Numerical Results 122

5.1 Validation 123

Figures 1 and 2 present the profile of the pressure after 10 time steps using the upwind 124

scheme with CFL = 10 for the Euler equations. Our initial state is a pressurized ball 125

at the center of a closed box and for t > 0 there are waves which propagate and reflect 126

all over the box. The gas expands in the box and we can see the shock waves and the 127

rarefaction waves. The solution is solved on a cartesian mesh of 200×200 cells. 128

Figures 3 and 4 show the streamlines of the steady state obtained using centered 129

scheme to solve a lid driven cavity flow at Reynolds number 400 on a cartesian 130

50× 50 mesh. The lid speed is 1 m/s, the maximum Mach number of the flow is 131

0.008. According to these results, we obtain the same solutions by using single or

Fig. 1. Profile of the pressure at time step
10 on one processor

Fig. 2. Profile of the pressure at time step
10 on four processors
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Fig. 3. Streamlines of Vx on one processor Fig. 4. Streamlines of Vx on four processors
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132

multiple domains. 133

5.2 Scalability 134

We now study the robustness and the scalability of our numerical method using the 135

same test as presented in Sect. 5.1. In Figs. 5 and 6, we compare the parallel efficiency 136
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of different preconditioners on 2D and 3D computations and with two and four pro- 137

cessors. We see that without the preconditioner the solver is scalable. However, when

Fig. 5. Parallel efficiency for 2D Lid driven
cavity

Fig. 6. Parallel efficiency for 3D Lid driven
cavity
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138

we use the Incomplete LU preconditioner, the scalability is not optimal especially for 139

3D problems. Our method proves better than ILU when we increase the number of 140

cells in each subdomain. In Fig. 7, we compare the robustness of different methods

Fig. 7. Comparisons of parallelism in 3D
Detonation, global mesh = 50×50×50

Fig. 8. Time of computation, 1 time step,
global mesh = 96×96×96
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141

using the detonation problem. This problem is solved on a catersian 50× 50× 50 142

cell mesh on two processors. The computation time of Dolean and Lanteri method 143

increases rapidly because it needs many Newton iterations for convergence at each 144

time step. In Fig. 8, we compare the scalability of the ILU preconditioner and of our 145

method using the lid driven cavity problem solved on a global catersian 96×96×96 146

cell mesh. The computation time of the domain decomposition method is higher than 147

that of the ILU preconditioner due to the large number of Schur complement itera- 148

tions. 149

6 Conclusion 150

We have presented a new interface variable which allows for the treatment of dif- 151

fusion terms and the use of various numerical schemes. We also compared the effi- 152

ciency and the scalability of our method with the classical distributed computations 153
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and the method of Dolean and al. Our approach seems promising but we still need 154

to find an efficient preconditioner for the Schur complement in order to reduce its 155

computational time. 156
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