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Summary. In this paper, a particular technique for the application of elementary multilevel 8

ideas to problems with warped boundaries is studied in the context of the numerical simulation 9

of elastic contact problems. Combining a general multilevel setting with a different perspec- 10

tive, namely an advanced geometric modeling point of view, we present a (monotone) multi- 11

grid method based on a hierarchy of parametric finite element spaces. For the construction, a 12

full-dimensional parameterization of high order is employed which accurately represents the 13

computational domain. 14

The purpose of the volume parametric finite element discretization put forward here is 15

two-fold. On the one hand, it allows for an elegant multilevel hierarchy to be used in precon- 16

ditioners. On the other hand, it comes with particular advantages for the modeling of con- 17

tact problems. After all, the long-term objective lies in an increased flexibility of hp-adaptive 18

methods for contact problems. 19

1 Introduction 20

In the numerical simulation of elastic contact problems, the treatment of the non- 21

penetration conditions at the potential contact boundary is of particular importance 22

for both the quality of a finite element approximation and the overall efficiency of the 23

algorithms. A vital challenge is to achieve an accurate description of geometric fea- 24

tures, e.g., of warped surfaces, often incorporated in three-dimensional models from 25

computer-aided design (CAD). Here, we investigate a new connection of different 26

numerical methods, namely modern discretization techniques for partial differential 27

equations on complex geometries on the one side and fast multilevel solvers for con- 28

strained minimization problems on the other side. 29

It is fair to say that the development of hp-adaptive methods for contact prob- 30

lems has not yet reached a mature state; see, e.g., [2] and the references therein. 31

Partly, this is due to the difficulties concerning the geometric representation of the 32

computational domain. A generally accepted paradigm is, though, that high order (fi- 33

nite element or boundary element) methods need high order meshes [11, 14]. This is 34

especially difficult for three-dimensional multi-body contact problems. In this case, 35

the application of non-conforming domain decomposition techniques [16] to realize 36
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an optimal information transfer across geometrically non-matching warped contact 37

interfaces is a highly demanding task. For low order finite elements, this has been 38

achieved, among others, by the authors; see [6]. 39

The perspective we offer here is a parametric finite element method. For hp- 40

adaptive methods, it is convenient to have a parameterization describing the geometry 41

accurately ready to hand. This is because a change of the computational domain 42

due to locally altered polynomial degree is not desirable. Therefore, it is reasonable 43

to uncouple the representation of the geometry on the one hand and of a scale of 44

approximation spaces for the discrete solution on the other hand. These two purposes 45

are usually not separated properly. But of course, one can find curved elements of 46

other than isoparametric structure in some form or another in the literature; see, e.g., 47

[8, 17] or the monograph [3] and the references therein. Note that, for similar reasons, 48

an “isogeometric” concept, which uses NURBS bases for both the description of the 49

geometry and the discrete solution of the differential equation, has been introduced 50

in [11]. 51

For practical computations, the development of fast and robust solvers is equally 52

important. As this issue has not yet been in the main focus of, e.g., the isogeometric 53

analysis [11], we would like to contribute ideas from the field of multilevel meth- 54

ods for variational inequalities. More precisely, we show how to use a monotone 55

multigrid method to efficiently solve the non-linear contact problem discretized with 56

low order parametric finite elements. Note that the actual treatment of higher order 57

elements is beyond the scope of the present discussion. 58

To obtain multilevel parametric finite element spaces in case d = 3, we use a 59

full-dimensional parameterization, constructed by tetrahedral transfinite interpola- 60

tion [15] of CAD data, to lift standard Lagrange elements to the computational do- 61

main. Note that, similarly, a surface parameterization has been used in a wavelet 62

Galerkin scheme for boundary integral equations; see [10]. Such a procedure may 63

serve as an essential prerequisite to tackle the problems mentioned above. In par- 64

ticular, many of the issues arising in the generation of p-version meshes for curved 65

boundaries [14] can be avoided in a quite elegant way. In this sense, although rather 66

expensive, the use of a high order parameterization permits maximal freedom in an 67

hp-adaptive discretization scheme. We presume that the present concept can also be 68

combined with the ideas in [6]. 69

All in all, our results constitute real progress made in the development of an 70

efficient hp-adaptive simulation environment for elastic contact problems in case of 71

complex three-dimensional geometries. 72

2 Parametric Finite Elements 73

In this section, we introduce a parametric finite element discretization. On the one 74

hand, this method uses much more geometric information from a CAD model than 75

standard finite elements; on the other hand, we do not use the same functions for the 76

discrete approximation of the displacement field as for the representation of the ge- 77

ometry, which is done in the so-called “isogeometric analysis” introduced in [11]. We 78
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use the associated space hierarchy in Sect. 3 to build a monotone multigrid method 79

for low order elements. 80

In the following, the symbols ϕ with some indices stand for certain full-dimen- 81

sional parameterizations or finite element transformations. We denote the (closed) 82

d-simplex by Δ d and its faces by Δ d
j , j ∈ {1, . . . ,d + 1}. To describe the elastic 83

body (here, d = 3) by a practicable parameterization, we consider a non-overlapping 84

simplicial decomposition of the computational domain Ω ⊂ R
d into a fixed number 85

of K ≥ 1 subdomains. Formally this reads as 86

Ω =
K⋃

k=1

Ω k =
K⋃

k=1

ϕk(Δ d),

where the notation already indicates that the subdomains (Ωk)k=1,...,K appear as par- 87

ticular images of the simplex Δ d under suitable parameterizations (ϕk)k=1,...,K . This 88

is illustrated in Fig. 1 (right). 89

Let us assume that the faces of the simplicial cells Ωk, namely the surfaces 90

ϕk(Δ d
j ), k ∈ {1, . . . ,K}, j ∈ {1, . . . ,d + 1}, are given as B-patches. This way to rep- 91

resent polynomial surfaces is analyzed in [4]. In this case, the author of [15] pro- 92

poses to construct the full-dimensional mappings ϕk : Δ d → R
d , k ∈ {1, . . . ,K}, as 93

transfinite interpolations of the surface values from the CAD model using certain 94

blending functions. Particularly, the single parameterizations are smooth and they 95

match across these B-patch surfaces if the surfaces themselves match. This gives rise 96

to a consistent global parameterization which we do not write down explicitly. We 97

note that this global mapping is continuous but not necessarily differentiable across 98

the interior interfaces. In addition, one can guarantee that each parameterization ϕk 99

satisfies the regularity assumption 100

det(∇∇∇ϕk)> 0 in Δ d . (1)

In fact, this is one of the main results of [15]. 101

In the following, we define the parametric finite element spaces in a rather 102

straightforward way via a lift of standard Lagrange finite elements. For this purpose, 103

let (T k
� )�∈N be a family of nested simplicial meshes of Δ d for each k ∈ {1, . . . ,K}. 104

To keep the global finite element spaces conforming, we assume that, at each level 105

� ∈N, the meshes meeting at the faces of the simplicial subdomains Ωk of Ω match. 106

Let T̂ be the reference element; here, T̂ = Δ d . Then, for each TΔ ∈ T k
� , there is an 107

affine mapping ϕTΔ : T̂ → Δ d such that ϕTΔ (T̂ ) = TΔ . 108

Now, we give a concise description of the parametric elements in Ω by employ- 109

ing the special finite element transformations 110

ϕT := ϕk ◦ϕTΔ : T̂ → R
d , (2)

which are diffeomorphisms between the reference element T̂ and the actual elements. 111

That way, the parametric elements at level �∈N are identified as the images of the el- 112

ements of the meshes (T k
� )k=1,...,K ; see Fig. 1. More precisely, a family of parametric 113

meshes (T�)�∈N of Ω can be defined by 114
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T k

Fig. 1. From left to right: the reference element T̂ = Δ 3; a mesh of the simplex Δ 3; a para-
metric mesh (here, K = 1) where each element is an image of an affine element; a tetrahedral
decomposition of a cylinder with K = 8
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T� :=
{

T = ϕT (T̂ ) = ϕk(ϕTΔ (T̂ )) | 1≤ k≤ K, TΔ ∈ T k
�

}
, ∀ � ∈N.

Assume that this family of global meshes is shape regular and quasi-uniform. Note 115

that assumption (1), combined with the continuous differentiability of the mappings 116

(ϕk)k=1,...,K in the compactum Δ d , implies that it is sufficient to ensure these regu- 117

larity conditions for each sequence (T k
� )�∈N separately as far as we keep K fixed. 118

Finally, let P := Pr(T̂ ) be the space of polynomials of degree r in T̂ . Then, for 119

� ∈N, the parametric finite element space associated with the parametric mesh T� is 120

X� :=
{

v ∈ C 0(Ω) | ∀ T ∈ T� ∃ w ∈ P : v(xxx) = w(ϕ−1
T (xxx)), ∀ xxx ∈ T

}
=

{
v ∈ C 0(Ω) | v◦ϕT ∈ P, ∀ T ∈ T�

}
.

(3)

Note that, in principle, the above definition makes sense for any reasonable set of 121

finite element transformations (ϕT )T∈T�
. In case the mappings are constructed as 122

in (2) via the high order parameterization from [15], this is a “superparametric” con- 123

cept if the degree r is small. This is in contrast to the subparametric or isoparametric 124

finite elements which are usually considered in the literature; see [3]. 125

From a practical point of view, virtually every kind of parameterization can be 126

employed with the following qualification. For an efficient assembly of the stiffness 127

matrix and the right hand side via sufficiently accurate (at best exact) numerical 128

quadrature, the derivatives of the resulting finite element transformations (2) and the 129

mappings themselves must be easy to evaluate; see, e.g., [1]. 130

Discretization of Signorini’s Problem 131

Let us now apply the above concept to a contact problem in elasticity to find the 132

deformation of a linear elastic body Ω in contact with a rigid obstacle. For this 133

purpose, let the boundary be decomposed into pairwise disjoint parts: ∂Ω = Γ D ∪ 134

Γ N ∪Γ C. Assume that the Dirichlet boundary ΓD is of positive Lebesgue measure in 135

dimension d−1. Moreover, the condition Γ C ∩Γ D = /0 may hold. 136

Let nnn be the outer normal vector field on ∂Ω ∈ C 1; the initial gap to the rigid 137

obstacle in this direction is given as a function g : ΓC → R≥0. Then, for sufficiently 138
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smooth prescribed volume and surface force densities fff = ( fi) and ppp = (pi), the 139

displacement field uuu : Ω →R
d solves the boundary value problem 140

−σi j(uuu), j = fi in Ω ,
uuu = 000 on ΓD,

σi j(uuu)n j = pi on ΓN ,
uuu ·nnn ≤ g on ΓC,

(4)

where σi j(uuu) = Ai jlmul,m are the stresses and A = (Ai jlm) is Hooke’s tensor. The 141

existence of a unique weak solution follows from Lions’ and Stampacchia’s lemma. 142

We use the vector-valued parametric finite element space XXX� := (X�)
d defined 143

by (3) with r = 1 and denote the set of nodes by N�. As usual, the non-penetration 144

conditions on the possible contact boundary ΓC are merely enforced at the potential 145

contact nodes N C
� = N�∩ΓC; see below. Then, a discretization of Signorini’s prob- 146

lem (4) with one-sided constraints is obtained by specifying a variational inequality 147

find uuu� ∈ KKK� such that a(uuu�,vvv−uuu�)≥ f (vvv−uuu�), ∀vvv ∈ KKK�, (5)

on a suitable set of admissible displacements 148

KKK� :=
{

vvv ∈ XXX � |vvv = 000 on ΓD, (vvv ·nnn)(p)≤ g(p), ∀ p ∈N C
�

}
.

In the discrete variational inequality (5), the (bi-)linear forms a and f represent- 149

ing the elastic energy and the applied forces, respectively, are given by a(uuu,vvv) := 150∫
Ω Ai jlmul,mvi, j dxxx and f (vvv) :=

∫
Ω fivi dxxx+

∫
ΓN

pivi daaa. 151

Although, from a modeling point of view, as much geometric information as 152

possible should be used for an accurate description of contact phenomena, we re- 153

mark that a strong pointwise non-penetration condition everywhere on ΓC is usually 154

not suitable for the variational formulation on which the (parametric) finite element 155

method relies. Besides, a decoupled set of constraints is preferable for a variety of 156

reasons. The common remedy is to prescribe the contact constraints with respect to 157

a suitable cone of Lagrange multipliers. This requires the introduction of appropri- 158

ate sets of functionals in (H
1
2 (ΓC))

′. To retain inequality constraints which can be 159

enforced merely by looking at the nodes, one can employ discontinuous test spaces 160

described, e.g., in [7]. 161

The quality of a priori error estimates for the above discretization certainly de- 162

pends on a number of aspects which have to be examined more closely. Beside reg- 163

ularity assumptions for the continuous solution, the balance of the primal degrees of 164

freedom and the constraints by means of an inf-sup condition and certain properties 165

of the parameterization, e.g., the regularity (1), influence the error analysis. 166

3 Monotone Multigrid Method for Parametric Elements 167

Similarly to some of the approaches reviewed in [5, Chap. 4], the scale of parametric 168

finite element spaces constitutes an adjusted discretization technique which allows 169
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for an almost straightforward application of multilevel ideas. In this section, we ex- 170

amine the constructed space hierarchy, which we presume to possess the required 171

approximation properties, and the corresponding natural transfer operators in a little 172

more detail. 173

For the solution of the discrete variational inequality, we propose a monotone 174

multigrid method [12]; see [13] for an overview of this and other solution strategies 175

for contact problems and more references. Here, the non-penetration conditions at 176

the potential contact nodes are treated by a non-linear block Gauß–Seidel smoother 177

at the finest level L. Let ũuu∈ KKKL be a preliminary approximate solution (i.e., a current 178

admissible iterate). Then, in the next step, a linear multilevel preconditioner depend- 179

ing on ũuu is employed, which acts only on the space {vvv ∈ XXXL |(vvv · nnn)(p) = 0, ∀ p ∈ 180

N C
L with (ũuu · nnn)(p) = g(p)}. The construction of the required coarse spaces from 181

the spaces (XXX�)�<L involves local modifications of the coarse level matrices resulting 182

from recursively truncated basis functions; see, e.g., [13]. 183

By construction, the spaces defined by (3) are nested. This is an immediate con- 184

sequence of the fact that the parameterization is fixed and does not change with the 185

index �. Still, let us formulate this statement in the following lemma and give an 186

elementary proof of the assertion. 187

Lemma 1. The parametric finite element spaces (X�)�∈N are nested. 188

Proof . For �≥ 1, let v ∈ X�−1 be arbitrary. Then, for T ∈ T�−1 there is a unique ele- 189

ment TΔ ∈T k
�−1 for some k∈{1, . . . ,K} such that ϕk(TΔ )= T . Let (T i

Δ )i=1,...,N be the 190

children of TΔ in T k
� . In general, 1≤N ≤ 2d; in case of standard uniform refinement 191

of the simplices, it is N = 2d . We have the corresponding set of elements (T i)i=1,...,N 192

in T� with T i = ϕk(T i
Δ ) for i ∈ {1, . . . ,N}. By assumption, v◦ϕT = v◦ϕk ◦ϕTΔ ∈ P. 193

Therefore, it is v ◦ϕT i = v ◦ϕk ◦ϕT i
Δ
∈ P because T i

Δ ⊂ TΔ and the finite element 194

transformations are affine. As each element of T� appears as the child of an element 195

in T�−1 in the above fashion, we obtain v∈ X�. Consequently, X�−1⊂ X� for all �≥ 1. 196

197
198

Therefore, no advanced transfer concepts need to be studied here as the canonical 199

inclusion I �
�−1 : X�−1→ X� is the most natural operator to be used as prolongation. 200

Note that these operators only depend on the logical structure; as in the standard 201

nested case, the representing matrices contain the entries 0, 0.5 and 1 and may be 202

computed from the neighborhood relations in and between the simplicial meshes 203

(T k
�−1)k=1,...,K and (T k

� )k=1,...,K . This is because the respective multilevel basis is 204

defined via a lift by proceeding as in (3). As a result, for a fixed finest level L, the 205

computation of the matrices I��−1 ∈R|N�|×|N�−1| for �∈ {1, . . . ,L} between the nested 206

spaces (X�)�=0,...,L does not need the parameterization. However, the computation of 207

the outer normals (nnn(p))p∈N C
L

and also of the values (g(p))p∈N C
L

for the prescription 208

of the contact constraints may require access to the mappings (ϕk)k=1,...,K . 209

We anticipate that the constructed coarse spaces have the desired multilevel ap- 210

proximation properties. More precisely, under mild assumptions on the employed 211

parameterization mappings (ϕk)k=1,...,K , the relevant Jackson- and Bernstein-type in- 212
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L #elements #dof #steps ρ̃ |AL|
0 96 107 8 (2) 0.032 3
1 768 615 10 (3) 0.031 15
2 6,144 3,915 11 (4) 0.065 58
3 49,152 27,795 13 (6) 0.091 199
4 393,216 209,187 14 (6) 0.102 753
5 3,145,728 1,622,595 15 (8) 0.114 2,984

Fig. 2. Contact problem of a parameterized cylinder with a rigid obstacle shaped like a broad
channel. The colors indicate the displacement in eee3-direction. Problem (5) is solved by a
conjugate gradient method preconditioned by the monotone multigrid method (V (3,3)-cycle)
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equalities transfer from the standard finite element spaces to the parametric spaces; 213

see also [9]. 214

Finally, we point out that no modifications are necessary in the code of the solver 215

provided that the local normal/tangential coordinate systems can be computed from 216

the parameterization. Consequently, a monotone multigrid method can be employed 217

for contact problems discretized with parametric finite elements in the quite straight- 218

forward way outlined above. Figure 2 shows a numerical example illustrating the 219

performance of the method for d = 3. The number of active nodes where the con- 220

straints are binding is denoted by |AL|. We report on the asymptotic convergence rate 221

ρ̃ of a conjugate gradient method preconditioned by the monotone multigrid method 222

(V (3,3)-cycle). Starting with the initial iterate zero at each refinement level (i.e., 223

no nested iteration), we list the number of total steps needed to reduce the norm of 224

the residual to less than 10−10. The count of included non-linear steps is given in 225

brackets (e.g., for L = 5, the active set is found after 8 of the 15 cycles such that the 226

remaining 7 steps are linear). Note that the pcg error reduction rate ρ̃ corresponds to 227

this linear iteration phase where the active set has already been identified. 228

4 Conclusion 229

The results described in this paper certainly have preliminary character; the perfor- 230

mance of the presented algorithms needs to be studied in more detail. This is work in 231

progress. However, the experiments so far show that (monotone) multigrid methods 232

based on parametric finite elements work as expected; see Fig. 2. Still, the effort of 233

constructing a (high order) parameterization by the methodology developed in [15] 234

especially pays if there is also a considerable gain on the modeling side. Here, the 235

effect of this special resolution of the boundary on the discrete approximation of con- 236

tact phenomena or general boundary effects needs to be investigated more closely. 237
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