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Summary. Partial differential equations in complex domains are very flexibly discretized by 7

finite elements with unstructured meshes. For such problems, the challenging task to construct 8

coarse level spaces for efficient multilevel preconditioners can in many cases be solved by a 9

semi-geometric approach, which is based on a hierarchy of non-nested meshes. In this paper, 10

we investigate the connection between the resulting semi-geometric multigrid methods and the 11

truly geometric variant more closely. This is done by considering a sufficiently simple com- 12

putational domain and treating the geometric multigrid method as a special case in a family of 13

almost nested settings. We study perturbations of the meshes and analyze how efficiency and 14

robustness depend on a truncation of the interlevel transfer. This gives a precise idea of which 15

results can be achieved in the general unstructured case. 16

1 Introduction 17

This paper is about multilevel methods for an efficient solution of partial differential 18

equations in complicated domains. Our particular purpose is to provide additional 19

insight into the design of coarse spaces in case of unstructured finite element meshes. 20

We study an approach of semi-geometric preconditioning based on non-nested mesh 21

hierarchies motivated by Cai [2], Chan et al. [3, 4], Griebel and Schweitzer [6], 22

Toselli and Widlund [8], and Xu [9]. This is a concept with rather weak requirements 23

(yet still in a variational setting) compared with other geometry-based methods. The 24

main contribution of the present paper is a numerical study of the almost nested 25

case, which establishes a connection between the multilevel methods based on non- 26

nested meshes and the standard variant. Combined with our investigations of mesh 27

perturbations, this allows for the determination of a suitable truncation parameter for 28

the interlevel transfer. As a result, the efficiency of the completely nested case is in 29

large part retained. 30
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2 Multilevel Preconditioners Based on Non-nested Meshes 31

This section aims at a semi-geometric preconditioning framework. We introduce a 32

multiplicative multilevel preconditioner based on a hierarchy of non-nested meshes. 33

This is done in a way which allows for a powerful convergence analysis as well as 34

an efficient implementation. 35

Let Ω ⊂ R
d be a Lipschitz domain of dimension d ∈ {2,3}. For a right hand 36

side F ∈ H−1(Ω) and a positive function α ∈ L∞(Ω) bounded away from zero, we 37

consider the variational model problem 38

u ∈ H1
0 (Ω) : a(u,v) := (α∇u,∇v)L2(Ω) = F (v), ∀ v ∈ H1

0 (Ω). (1)

For a Galerkin discretization of problem (1), let (T�)�∈N be a family of non-nested 39

shape regular meshes of domains (Ω�)�∈N. We denote the set of nodes of T� by N� 40

and abbreviate n� := |N�|. At each level �, we consider the space X� of Lagrange 41

conforming finite elements of first order and denote its nodal basis as Λ� = (λ �
p)p∈N�

42

with λ �
p(q)= δpq, p,q∈N�. For simplicity, we assume that ΩL =Ω and XL⊂H1

0 (Ω) 43

for a fixed finest level L ≥ 2. In addition, let Ω� ⊃ Ω for all � ∈ {0, . . . ,L−1}. The 44

basic idea how the setting can be chosen is exemplarily illustrated in Fig. 1 (left) for 45

an unstructured fine mesh with structured coarse meshes. 46

In the following, we consider an iterative method to efficiently solve the discrete 47

problem, namely the ill-conditioned equation 48

AAALuuuL = FFFL in R
nL .

Here, AAAL ∈RnL×nL is the stiffness matrix associated with XL, i.e., (AAAL)pq := a(λ L
p ,λ L

q ) 49

for p,q ∈ NL, and the right hand side FFFL ∈ R
nL is given by (FFFL)p := F (λ L

p ) for 50

p ∈NL. 51

For the construction of an appropriate coarse space hierarchy, let the spaces 52

(X�)�=0,...,L be connected by the prolongation operators (Π �
�−1)�=1,...,L, namely 53

Π �
�−1 : X�−1→ X�, ∀ � ∈ {1, . . . ,L}.

The choice of a concrete transfer concept generating a set of suitable linear operators 54

(Π �
�−1)�=1,...,L in practice is discussed in full detail in [5]. An example is nodal inter- 55

polation. Now, let VL := XL; we emphasize that the fine space will not be touched in 56

the present framework. We construct a nested sequence of spaces (V�)�=0,...,L via 57

V� := Π L
L−1 · · ·Π �+1

� X�, ∀ � ∈ {0, . . . ,L−1}.

The images of the compositions of the given operators determine the coarse spaces. 58

With the nodal bases (Λ�)�=0,...,L, matrix representations ΠΠΠ �
�−1 ∈ R

n�×n�−1 of 59

Π �
�−1 can be computed for � ∈ {1, . . . ,L} via ΠΠΠ �

�−1vvv := Φ−1
� (Π �

�−1Φ�−1(vvv)) for all 60

vvv ∈ R
n�−1 with the coordinate isomorphisms Φ� : Rn� → X�. Assume that these ma- 61

trices have full rank. Then, bases of (V�)�=0,...,L−1 can recursively be defined by 62
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λ̃ �
q := ∑

p∈N�+1

(ΠΠΠ �+1
� )pqλ̃ �+1

p , ∀ q ∈N�,

starting with λ̃ L
q := λ L

q for q ∈NL. The new coordinate isomorphisms with respect 63

to the bases Λ̃� := (λ̃ �
p)p∈N�

, �∈ {0, . . . ,L}, will be denoted by Φ̃� : Rn� →V�. More- 64

over, MMM� ∈Rn�×n� is the mass matrix with respect to Λ̃�, i.e., (MMM�)pq := (λ̃ �
p, λ̃ �

q)L2(Ω) 65

for p,q ∈N�, � ∈ {0, . . . ,L}. 66

Note that the mapping Π �
�−1 between the given spaces X�−1 and X� usually does 67

not act on V�−1 directly. Still, the matrix ΠΠΠ �
�−1 determines a linear transfer operator 68

Π̃ �
�−1 : V�−1→V� by 69

v �→ Π̃ �
�−1v := Φ̃�(ΠΠΠ �

�−1Φ̃−1
�−1(v)), ∀ v ∈V�−1, ∀ � ∈ {1, . . . ,L}.

One can easily see that Π̃ �
�−1 is the natural embedding because it interpolates the 70

respective basis exactly. Thus, we can regard the matrix ΠΠΠ �
�−1 as an algebraic repre- 71

sentation of the natural embedding of V�−1 into V�. Consequently, the L2-projection 72

from V� to V�−1 is represented by the matrix MMM−1
�−1(ΠΠΠ

�
�−1)

T MMM� ∈ R
n�−1×n� . This 73

holds true for any imaginable set of operators between the original non-nested spaces 74

(X�)�=0,...,L; no special structure is required. 75

With this information we can summarize our efforts as follows. From the com- 76

pletely unrelated finite element spaces (X�)�=0,...,L we have constructed a sequence of 77

nested spaces (V�)�=0,...,L such that the given prolongation operators (Π �
�−1)�=1,...,L 78

induce the natural embeddings (V�−1 ↪→ V�)�=1,...,L by their matrix representations 79

(ΠΠΠ �
�−1)�=1,...,L with respect to the original bases (Λ�)�=0,...,L. In particular, the coarse 80

level matrices for the nested spaces with the respective bases Λ̃�, as customary in a 81

variational approach, can be written as 82

AAA�−1 = (ΠΠΠ �
�−1)

T AAA� ΠΠΠ �
�−1 ∈ R

n�−1×n�−1 , ∀ � ∈ {1, . . . ,L}. (2)

If AAAL is symmetric positive definite and if ΠΠΠ �
�−1 has full rank for all � ∈ {1, . . . ,L}, 83

the respective coarse level matrices (AAA�)�=0,...,L−1 are symmetric positive definite, 84

too. Note that the bandwidth of the coarse matrices depends on the transfer concept 85

employed to obtain the prolongation operators. 86

The multiplicative Schwarz method studied in this paper is the symmetric multi- 87

grid V -cycle in the novel space hierarchy (V�)�=0,...,L, which combines (Gauß– 88

Seidel) smoothing and coarse level correction in the standard way. Naturally, only 89

multiplications with the matrices (ΠΠΠ �
�−1)�=1,...,L and their transposes appear in the 90

interlevel transfer of the algorithm; no mass matrices need to be inverted. Given the 91

meshes (T�)�=0,...,L and a suitable transfer concept, we can compute all auxiliary 92

matrices in a setup phase. 93

For a complete convergence analysis of this class of algorithms, which puts the 94

semi-geometric approach into the well-known context of [1], we refer to [5]. There, 95

we carefully distinguish between the generally different domains (Ω�)�=0,...,L and 96

elaborate requirements for the meshes and the interlevel transfer to obtain a quasi- 97

optimal result. 98
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Fig. 1. Simplified sketch in d = 2. Basic idea of the coarse space construction based on non-
nested meshes (left). Concerning the experiments: scaling (center) and translation (right) of
the coarse meshes keeping the respective fine mesh fixed. We emphasize that all computations
are in d = 3

The geometric nature of the construction usually requires some modifications of 99

the meshes and operators, e.g., to ensure full rank. Moreover, a prevalent technique 100

to keep the operator complexity Cop := ∑L
�=0 nA

� /nA
L small, where nA

� is the number 101

of non-zero entries of AAA�, is truncation of the prolongation operators by deleting the 102

entries of (ΠΠΠ �
�−1)�=1,...,L which are less than a truncation parameter εtr > 0 times the 103

maximal entry in the respective row. Afterwards, the modified rows are rescaled such 104

that the row totals remain unchanged; see [7]. All this is done in the setup before the 105

computation of the respective Galerkin products (2). In this paper, we choose Π �
�−1 as 106

standard nodal interpolation in X� for �∈ {1, . . . ,L}, namely Π �
�−1v := ∑p∈N�

v(p)λ �
p 107

for all v ∈ X�−1, and refer to [5] for a detailed discussion. 108

3 Numerical Studies 109

3.1 The Almost Nested Limiting Case 110

We consider a hierarchy of four nested meshes (T�)�=0,...,3 of the unit cube in R
3

111

where the coarsest mesh consists of 768 elements with 189 nodes. Throughout the 112

study, we keep the finest mesh TL = T3 with 393,216 elements and 68,705 nodes 113

fixed. In contrast, the coarse domains (Ω�)�<3 and the corresponding coarse meshes 114

(T�)�<3 are scaled around the center with a different factor between 0.95 and 1.05 115

for each set of tests; see Fig. 1 (center). 116

In the semi-geometric framework, it is absolutely necessary to perform a trun- 117

cation procedure to retain the optimality of the algorithms. Otherwise, one can in 118

general not prevent the appearance of very small and thus irrelevant entries in the 119

prolongation matrices. We study the complexity of the constructed space hierarchy 120

and the convergence of the semi-geometric multigrid method (stand-alone or in a 121

preconditioned conjugate gradient method) for a variety of values for the parame- 122

ter εtr in [0.01,0.49]. Note that, for linear finite elements associated with simplicial 123

meshes, it does generally not make sense to choose εtr greater than or equal to 0.5. 124
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Fig. 2. The complexity measure Cop (top) and the convergence rates ρ̄V (2,2) (left) and ρ̄pcg
V (2,2)

(right) of a semi-geometric multigrid method, plotted versus the scale of the coarse meshes.
Each line represents a different parameter εtr ∈ [0.01,0.49]. The marked lines correspond to
the values 0.01 (∇), 0.20 (◦) and 0.49 (
), respectively
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This is because such a choice would result in deleting entries even in case of perfectly 125

nested meshes, leaving nodes without direct coupling to the next coarser level. 126

The results of the experiments with scaled (Ω�)�<3 are illustrated in Fig. 2. Each 127

single line represents either the complexity Cop or one of the asymptotic convergence 128

rates ρ̄V (2,2) and ρ̄pcg
V (2,2) for a fixed parameter εtr plotted versus the scale of the 129

coarse meshes. The lines corresponding to the extreme εtr-values 0.01 and 0.49 are 130

marked by downward and upward triangles, respectively; an intermediate value of 131

0.20 is marked by circles. Table 1 contains the numbers for these three values. We 132

stop with the scales 0.95 and 1.05, respectively. For smaller factors, the convergence 133

rates further increase quite fast as less and less of the computational domain Ω = 134

ΩL is covered by the coarse meshes; the complexity measures do not change much 135

in this case. For larger factors, the convergence rates slowly increase whereas the 136

complexity measures decrease. This is due to the fact that more and more elements 137

of the coarse meshes lie completely outside the computational domain. 138
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scale Cop ρ̄V (2,2) ρ̄pcg
V (2,2) Cop ρ̄V (2,2) ρ̄pcg

V (2,2) Cop ρ̄V (2,2) ρ̄pcg
V (2,2)

t1.10.95 1.52 0.169 0.054 1.33 0.168 0.055 1.20 0.256 0.089
t1.20.96 1.52 0.118 0.041 1.34 0.142 0.043 1.19 0.268 0.091
t1.30.97 1.53 0.018 0.008 1.32 0.048 0.020 1.18 0.235 0.076
t1.40.98 1.53 0.026 0.009 1.25 0.047 0.018 1.16 0.112 0.037
t1.50.99 1.52 0.031 0.012 1.16 0.041 0.015 1.15 0.041 0.016
t1.61.00 1.15 0.044 0.016 1.15 0.044 0.016 1.15 0.044 0.016
t1.71.01 1.50 0.031 0.012 1.16 0.048 0.017 1.15 0.048 0.018
t1.81.02 1.51 0.025 0.009 1.25 0.047 0.019 1.15 0.122 0.047
t1.91.03 1.51 0.020 0.008 1.31 0.048 0.019 1.16 0.273 0.085
t1.101.04 1.50 0.020 0.008 1.30 0.037 0.017 1.18 0.256 0.089
t1.111.05 1.46 0.024 0.009 1.29 0.045 0.017 1.18 0.269 0.088
t1.12︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
t1.13εtr = 0.01 εtr = 0.20 εtr = 0.49

Table 1. Studying the convergence behavior for a family of almost nested meshes associated
with the unit cube. The middle row (scale 1.00) corresponds to the completely nested case in
which the approach coincides with the standard geometric multigrid method.

3.2 Robustness of the Coarse Level Hierarchy 139

The second experiment is to further investigate the influence of perturbations of the 140

meshes on the coarse level hierarchy and the multigrid performance. Here, we con- 141

sider different translations of the coarse meshes associated with the cube of scale 1.05 142

in direction of the unit vector ( 2
3 ,

2
3 ,

1
3 )

T ∈ R
3 by sizes up to 0.12. In this case, the 143

computational domain Ω = ΩL is covered by the domains (Ω�)�<L for almost the en- 144

tire range of translations; see Fig. 1 (right). Basic robustness of the semi-geometric 145

construction is demonstrated by the results in Fig. 3 where the parameter εtr again 146

varies in the interval [0.01,0.49]. 147

4 Discussion of the Results 148

As expected and observed in the vast majority of experiments, the convergence rates 149

principally increase with increasing truncation parameter, which indicates that the 150

constructed coarse spaces have adequate approximation power. Note that the deteri- 151

oration of the convergence behavior is usually rather slow, though. It is evident that 152

the semi-geometric methods, which leave the coarse meshes flexible, coincide with 153

the standard geometric variants in the special case of nested meshes. In addition, an 154

important observation from Sect. 3.1 is that both the complexities Cop and the con- 155

vergence rates of the geometric multigrid methods are retained in case the meshes 156

are almost nested if a suitable parameter εtr is applied; see the discussion below. 157

This also indicates that our construction is robust in the sense that the coarse level 158

hierarchy (and with it the multigrid convergence) only varies slightly if the coarse 159

meshes themselves change slightly. Perturbations of the meshes are irrelevant for the 160
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Fig. 3. The numbers Cop (top), ρ̄V (2,2) (left), and ρ̄pcg
V (2,2) (right). Each line represents a dif-

ferent parameter εtr ∈ [0.01,0.49] plotted versus the size of the coarse mesh translation
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efficiency of the methods. This can also be seen clearly in the experiments described 161

in Sect. 3.2. 162

As a general rule, we observe the following effects in Sect. 3.1. The larger the pa- 163

rameter εtr the less sensitive is the complexity Cop to changes of the coarse meshes. 164

The smaller εtr the less sensitive are the convergence rates to changes of the coarse 165

meshes. In our examples, the convergence actually improves in case of small pertur- 166

bations for sufficiently small εtr. This is of course accompanied by a rapid increase of 167

Cop. The choice εtr = 0.20 (which is, interestingly enough, a standard value in many 168

algebraic multigrid algorithms) is a reasonable attempt to achieve the two competing 169

goals. It manages to keep the convergence rates almost constant for a rather broad 170

range of different problem sizes while leading to an only moderate increase of Cop. 171

Finally, let us compare to the general semi-geometric case. For an unstructured 172

mesh with similar size (64,833 nodes) approximating a ball, the measured rates, 173

ρ̄V (2,2) = 0.060 and ρ̄pcg
V (2,2) = 0.024, are not much worse than the ones produced by 174

the geometric method on the cube with completely nested meshes, ρ̄V (2,2) = 0.044 175

and ρ̄pcg
V (2,2) = 0.016. However, for unstructured meshes without natural coarse level 176

hierarchy, it seems impossible to achieve this fast convergence with an opera- 177

tor complexity as small as 1.15 which is easily obtained in the structured case. 178
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For comparison, we have Cop = 1.38 for the ball. A whole series of experiments 179

studying the asymptotics of the semi-geometric preconditioners can be found in [5]. 180

5 Conclusion 181

In this paper, we reported on numerical studies of a class of preconditioners based on 182

non-nested meshes. Considering the almost nested case, we determined a truncation 183

parameter εtr = 0.20 of the interlevel transfer to be reasonable in order to ensure that 184

the efficiency of the completely nested case is in large part retained. Moreover, per- 185

turbations of the meshes turned out to be irrelevant for the efficiency of the methods. 186

Our results also show that, in the variational coarse space construction, it is ap- 187

propriate to choose auxiliary meshes mimicking geometric coarsening, which leads 188

to particularly small hierarchical overhead (less than 40%). This is in contrast to the 189

non-variational variant of the auxiliary space method [9] where both analysis and ex- 190

periments indicate that the sizes of the original space and of the auxiliary space need 191

to be comparable in a quite restrictive sense such that Cop is usually clearly larger 192

than two. 193
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