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Summary. The BDDC algorithm is extended to a large class of discontinuous Galerkin (DG) 7

discretizations of second order elliptic problems in two spatial dimensions. An estimate of 8

C(1+ log(p2H/h))2 is obtained for the condition number of the preconditioned system where 9

C is a constant independent of p, h or H. Numerical simulations are presented which confirm 10

the theoretical results 11

1 Introduction 12

A Balancing Domain Decomposition by Constraints (BDDC) method is presented 13

for the solution of a discontinuous Galerkin (DG) discretization of a second-order 14

elliptic problem in two dimensions. BDDC was originally introduced in [8] for the 15

solution of continuous finite element discretizations. Mandel and Dohrmann [13] 16

later proved a condition number bound of κ ≤ C(1 + log(H/h))2 for precondi- 17

tioned system of a continuous finite element discretization of second order ellip- 18

tic problems. Pavarino [15] and Klawonn et al. [11] extended the BDDC algorithm 19

to higher-order finite element methods and proved a condition number bound of 20

κ ≤C(1+ log(p2H/h))2. Further analysis of BDDC methods and their connection 21

to FETI methods has been presented in [12, 14]. 22

While domain decomposition methods have been widely studied for continu- 23

ous finite element discretizations, relatively little work has been performed for dis- 24

continuous Galerkin discretizations. Previous work on domain decomposition meth- 25

ods for DG discretizations include [1, 10] and [9]. This work presents a BDDC 26

method applied to a large class of DG methods considered in the unified analysis 27

of [2]. A key component for the development and analysis of the BDDC algorithm 28

involves presenting the DG discretization as the sum of element-wise “local” bilinear 29

forms. The element-wise perspective leads naturally to the appropriate choice for the 30

subdomain-wise local bilinear forms. Additionally, this perspective enables a con- 31

nection to be drawn between the DG discretization and a related continuous finite 32

element discretization. As a result of this connection, the condition number bound 33

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1__66, © Springer-Verlag Berlin Heidelberg 2013

mailto:diosady@alum.mit.edu
mailto:darmofal@mit.edu


Page 590

UN
CO

RR
EC

TE
D

PR
O
O
F

Laslo Diosady and David Darmofal

for the BDDC preconditioned system for a large class of conservative and consistent 34

DG methods is identical to that for continuous finite element methods. 35

2 DG Discretization 36

Consider the second order elliptic equation in a domain Ω ⊂R2: 37

−∇ · (ρ∇u) = f in Ω , u = 0 on ∂Ω (1)

with positive ρ > 0∈ L∞(Ω), f ∈ L2(Ω). Let the triangulation T be a partition of Ω 38

into triangles or quadrilaterals. In order to simplify the presentation we assume that 39

ρ takes on a constant value, ρκ on each element κ . Define E to be the union of edges 40

of elements κ . Additionally, define E i ⊂ E and E ∂ ⊂ E to be the set of interior, 41

respectively boundary edges. Note that any edge e ∈ E i is shared by two adjacent 42

elements κ+ and κ− with corresponding outward pointing normal vectors nnn+ and 43

nnn−. Let P p(κ) denote the space of polynomials of order at most p on κ and define 44

the following finite element space W p
h := {wh ∈ L2(Ω) : wh|κ ∈P p(κ) ∀κ ∈Ω}. 45

Note that traces of functions uh ∈W p
h are in general double valued on each edge, 46

e ∈ E i, with values u+h and u−h corresponding to traces from elements κ+ and κ− 47

respectively. On e∈ E ∂ , associate u+h with the trace taken from the element, κ+ ∈Th, 48

neighbouring e. The weak form of (1) on each element is given by: ∀wh ∈P p(κ) 49

(ρ∇uh,∇wh)κ −
〈
ρ(u+h − ûh)nnn

+,∇w+
h

〉
∂κ +

〈
q̂qqh,w

+
h nnn+

〉
∂κ = ( f ,wh)κ (2)

where (·, ·)κ :=
∫

κ and 〈·, ·〉∂κ :=
∫

∂κ . Superscript + is used to explicitly denote val- 50

ues on ∂κ , taken from κ . For all wh ∈W p
h , ŵh = ŵh(w

+
h ,w

−
h ) is a single valued 51

numerical trace on e ∈ E i, while ŵh = 0 for e ∈ E ∂ . Note that ûh = 0 on e ∈ E ∂ , cor- 52

responds to weakly enforced homogeneous boundary conditions on ∂Ω . Similarly 53

q̂qq = q̂qq(ρ+,ρ−,∇u+h ,∇u−h ,u
+
h ,u

−
h ) is a single valued numerical flux approximating 54

qqq = ρ∇u on e ∈ E . Summing over all elements gives: 55

a(uh,wh) = ( f ,wh)Ω ∀wh ∈W p
h (3)

A key component, required for the development and analysis of the algorithms pre- 56

sented, is to express the global bilinear form a(uh,wh) as the sum of element-wise 57

contributions aκ(uh,wh) such that 58

a(uh,wh) = ∑
κ∈T

aκ(uh,wh) (4)

where aκ(uh,wh) is a symmetric, positive semi-definite “local bilinear form”. In par- 59

ticular, the local bilinear form should have a compact stencil, such that aκ(uh,wh) is 60

a function of only uh, ∇uh in κ , and u+h , ∇u+h and ûh on ∂κ . The local bilinear form 61

is written as: 62

aκ(uh,wh) = (ρ∇uh,∇wh)κ −
〈
ρ(u+h − ûh)nnn

+,∇w+
h

〉
∂κ +

〈
q̂qq+h ,(w

+
h − ŵh)nnn

+
〉

∂κ

= (ρ∇uh,∇wh)κ −
〈
ρ �u�+h ,∇w+

h

〉
∂κ +

〈
q̂qq+h ,�wh�

+〉
∂κ (5)
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where q̂qq+h = q̂qq+h (ρ
+,∇u+h ,u

+
h , ûh) is a “local numerical flux”. The choice of the 63

numerical trace ûh and flux q̂qqh define the particular DG method considered. Table 1 64

lists the numerical traces and fluxes for the DG methods considered in this paper, 65

while Table 2 lists the corresponding local bilinear forms.

t1.1DG Method ûh q̂qqh q̂qq+h
t1.2IP {uh} −{ρ∇uh}+ ηe

h

{
ρ �uh�

±} −ρ+∇u+h + ηe
h ρ+ �ρuh�

+

t1.3BR2 {uh} −{ρ∇uh}+ηe
{

ρre(�uh�
±)

} −ρ+∇u+h +ηeρ+re(�uh�
+)

t1.4Brezzi {uh} {qqqh}+ηe
{

ρre(�uh�
±)

}
qqq+h +ηeρ+re(�uh�

+)

t1.5LDG {uh}−β · �uh� {qqqh}+β �qqqh�+
2ηe
h

{
ρ �uh�

±} qqq+h + ηe
h ρ+ �uh�

+

t1.6CDG {uh}−β · �uh�
{

qqqe
h

}
+β

�
qqqe

h

�
+ 2ηe

h

{
ρ �uh�

±} qqqe+
h + ηe

h ρ+ �uh�
+

Table 1. Numerical fluxes for different DG methods. (IP: Interior Penalty, BR2: [3],
Brezzi: [4], LDG: [5] CDG: [16])

66

t2.1Method aκ(uh,wh)

t2.2IP g+∑e∈∂κ
ηe
he

〈
ρ �uh�

+ ,�wh�
+〉

e
t2.3BR2 g+∑e∈∂κ ηe

(
ρre(�uh�

+),re(�wh�
+)

)
κ

t2.4Brezzi g+
(
ρrκ(�uh�

+),rκ (�wh�
+)

)
κ +∑e∈∂κ ηe

(
ρre(�uh�

+),re(�wh�
+)

)
κ

t2.5LDG g+
(
ρrκ(�uh�

+),rκ (�wh�
+)

)
κ +∑e∈∂κ

ηe
he

〈
ρ �uh�

+ ,�wh�
+〉

e
t2.6CDG g+∑e∈∂κ

(
ρre(�uh�

+),re(�wh�
+)

)
κ +∑e∈∂κ

ηe
he

〈
ρ �uh�

+ ,�wh�
+〉

e

Where g = (ρ∇uh,∇wh)κ −
〈
ρ �uh�

+ ,∇w+
h

〉
∂κ −

〈
ρ∇uh,�wh�

+〉
∂κ

Table 2. Elementwise bilinear form for different DG methods

In the definition of the different DG methods, {uh} = 1
2 (u

+
h + u−h ) and �uh� = 67

u+h nnn+ + u−h nnn− are average and jump operators on e ∈ E i. Additionally, a second set 68

of jump operators involving the numerical trace û are given by �uh�
+ = u+h nnn++ ûhnnn− 69

and �uh�
− = ûhnnn++u−h nnn−. Define qqqh =−ρ(∇uh− rκ(�uh�

+)) and qqqe
h =−ρ(∇uh− 70

re(�u�+)) where rκ(φ) and re(φ) ∈ [P p(κ)]n are lifting operators defined such that: 71

(rκ(φ),vvvh)κ =
〈
φ ,vvv+h

〉
κ and (re(φ),vvvh)κ =

〈
φ ,vvv+h

〉
e, ∀vvvh ∈ [P p(κ)]n. Additionally, 72

on each edge in E , ηe is a penalty parameter, while β = 1
2 Sκ−

κ+nnn++Sκ+

κ−nnn− is a vector 73

where Sκ−
κ+ ∈ {0,1} is a switch defined, such that Sκ−

κ+ + Sκ+

κ− = 1. 74

Consider using a nodal basis on each element κ to define W p
h . Figure 1 shows 75

graphically the nodal degrees of freedom involved in defining the local bilinear form. 76

For the IP, BR2 and Brezzi schemes, the numerical trace ûh on an edge/face depends 77

on both u+h and u−h . Hence the local bilinear form corresponds to all nodal degrees 78

of freedom defining uh on κ as well as nodal values on all edge/faces of ∂κ ∩ E i
79
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corresponding to the trace of uh from elements neighbouring κ . On the other hand, 80

for the LDG and CDG methods, the numerical trace ûh takes on the value of u+h if 81

Sκ−
κ+ = 0 or u−h if Sκ−

κ+ = 1. Hence the local bilinear form corresponds only to degrees 82

of freedom defining uh on κ and nodal values corresponding to the trace of uh on 83

neighbouring elements across edge/faces of ∂κ ∩E i for which Sκ−
κ+ = 1.

IP, BR2, Brezzi CDG, LDG

Element Node
Neighbor Node
Switch (b) 

Fig. 1. Degrees of freedom involved in “local” bilinear form

84
The element-wise bilinear form aκ(uh,uh) satisfies 85

aκ(uh,uh) ≥ 0 (6)

with aκ(uh,uh) = 0 iff uh = ûh = K for some constant K. The proof of (6) closely 86

follows the proof of boundedness and stability of the different DG methods presented 87

in [2]. As a result it is possible to show that the bilinear form is equivalent to a 88

quadratic form based on the value of uh at the nodes xxx: 89

caκ(uh,uh) ≤ ρκ p4hn−2 ∑xxxi,xxx j∈κ∪κ ′ (uh(xxxi)−uh(xxx j))
2 ≤ Caκ(uh,uh) (7)

where c and C are constants independent of h, p and ρ , while xxxi,xxx j are the nodes 90

on κ defining the basis for uh and nodes on ∂κ ′ defining a basis for the trace u−h 91

from neighbours κ ′ of κ . Using the quadratic form in (7) a connection may be drawn 92

between the DG discretization a continuous finite element discretization on a subtri- 93

angulation (See for example [6] Lemma 4.3). Further details are given in [7]. 94

3 Domain Decomposition 95

Consider a partition of the domain Ω into substructures Ωi such that Ω̄ = ∪N
i=1Ω̄i. 96

The substructures Ωi are disjoint shape regular polygonal regions of diameter O(H), 97

consisting of a union of elements in T . Assume that ρ(xxx) takes on a constant value, 98

ρi, within each subdomain Ωi. Additionally, assume that each element κ in Ωi with 99

an edge e on ∂Ωi∩∂Ω j has neighbours only in Ωi∪Ω j. 100

Define the local interface Γi = ∂Ωi\∂Ω and global interface Γ by Γ = ∪N
i=1Γi. 101

Denote by W (i)
Γ the space of discrete nodal values on Γi which correspond to degrees 102
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of freedom shared between Ωi and neighbouring subdomains Ω j, while W (i)
I denotes 103

the space of discrete unknowns local to a single substructure Ωi. In particular, note 104

that for the IP, BR2 and Brezzi et al. methods W (i)
Γ includes for each edge e ∈ Γi 105

degrees of freedom defining two sets of trace values u+ from κ+ ∈ Ωi and u− for 106

κ− ∈Ω j. Thus, W (i)
I corresponds to nodal values strictly interior to Ωi or on ∂Ωi\Γi. 107

On the other hand, for the CDG and LDG methods W (i)
Γ includes for each edge e∈Γi 108

degrees of freedom defining a single trace value corresponding to either u+ from 109

κ+ ∈ Ωi if Sκ−
κ+ = 0 or u− from κ− ∈ Ω j if Sκ−

κ+ = 1. Hence, W (i)
I corresponds to 110

nodal values interior to Ωi and on ∂Ωi\Γi as well as nodal values defining u+ on 111

e ∈ Γi for which Sκ−
κ+ = 1. 112

Similarly, define ŴΓ as the space of degrees of freedom shared among multiple 113

subdomains and WI as the space of degrees of freedom which correspond only to a 114

single subdomain. Note that WI is equal to the product space WI := Π N
i=1W (i)

I , while 115

in general ŴΓ ⊂WΓ := Π N
i=1W (i)

Γ . Define local operators R(i)
Γ : ŴΓ →W (i)

Γ which 116

extract the local degrees of freedom on Γi from those on Γ . Additionally define a 117

global operator RΓ : ŴΓ →WΓ which is formed by a direct assembly of R(i)
Γ . The 118

discrete form of (3) is written as: 119

[
AII AT

Γ I
AΓ I AΓ Γ

][
uI

uΓ

]
=

[
bI

bΓ

]
. (8)

where uI and uΓ corresponds to degrees of freedom associated with WI and ŴΓ 120

respectively. Since the degrees of freedom associated with WI are local to a particular 121

substructure they may be locally eliminated to obtain a system 122

ŜΓ uΓ = gΓ (9)

where ŜΓ = AΓ Γ − AΓ IA
−1
II AT

Γ I and gΓ = bΓ Γ − AΓ IA
−1
II bΓ I . ŜΓ and gΓ may be 123

formed by a direct assembly: 124

ŜΓ =
N

∑
i=1

R(i)T

Γ S(i)Γ R(i)
Γ gΓ =

N

∑
i=1

R(i)T

Γ g(i)Γ (10)

where S(i)Γ = A(i)
Γ Γ −A(i)

Γ IA
(i)−1

II A(i)T

Γ I and g(i)Γ = b(i)Γ −A(i)
Γ IA

(i)−1

II b(i)I . 125

4 BDDC 126

A BDDC preconditioner is used to solve the Schur complement problem (9). A full 127

description of the BDDC preconditioner is given by Li and Widlund [12]. In order to 128

define the BDDC preconditioner W (i)
Γ is reparameterize into two orthogonal spaces 129

W (i)
Π and W (i)

Δ . The primal space W (i)
Π is the space of discrete unknowns correspond- 130

ing to functions with a constant value of û on each edge of substructure Ωi. The 131
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dual space, W (i)
Δ is the space of discrete unknowns corresponding to functions which 132

have zero mean value of û on Γi. For continuous finite element discretizations, dif- 133

ferent primal degrees of freedom such as subdomain corners have also been used, 134

however these are not explored in this work. The BDDC algorithm is implemented 135

using a change of basis as described in [12]. The partially assembled space is defined 136

as W̃Γ = ŴΠ ⊕
(

Π N
i=1W (i)

Δ

)
, where ŴΠ , single valued on Γ , is formed by assem- 137

bling the local primal spaces, W (i)
Π . Define additional local operators R̄(i)

Γ : W̃Γ →W (i)
Γ 138

which extract the degrees of freedom in W̃Γ corresponding to Γi. The global operator 139

R̄Γ : W̃Γ →WΓ is formed by a direct assembly of R̄(i)
Γ . Also define the global operator 140

R̃Γ : ŴΓ → W̃Γ . The partially assembled Schur complement matrix S̃, is given by: 141

S̃Γ =
N

∑
i=1

R̄(i)T

Γ S(i)Γ R̄(i)
Γ (11)

The scaled operator R̃D,Γ : ŴΓ → W̃Γ is obtained by multiplying the entries of R̃Γ 142

corresponding to W (i)
Δ by δ †

i (x), where δ †
i (x) defined for each nodal degree of free- 143

dom in W (i)
Γ on ∂Ωi and ∂Ω j as δ †

i =
ργ

i
ργ

i +ργ
j
, γ ∈ [1/2,∞). The BDDC preconditioner 144

M−1
BDDC : ŴΓ → ŴΓ is given by: 145

M−1
BDDC = R̃T

D,Γ S̃−1
Γ R̃D,Γ (12)

The condition number of the preconditioner operator M−1
BDDCŜ is bounded by 146

C(1+ log(p2H/h))2 where C is a constant independent of p, h, H or ρ . This is the 147

same condition number bound as obtained by Klawonn et al. [11] for a continuous 148

finite element discretization. Proof of this condition number bound closely follows 149

that presented by Tu [17] for mixed finite element methods, which in turn builds upon 150

the work of [6]. The key idea is to connect the DG discretization to a related con- 151

tinuous finite element discretization on a subtriangulation of T . The ability to con- 152

nect the DG discretization to the continuous finite element discretization is a direct 153

result of (7) (see [6]). The existing theory for continuous finite elements developed 154

in [13, 15] and [11] is then leveraged to obtain the desired condition number bound. 155

Further details are provided in [7]. 156

5 Numerical Results 157

This section presents numerical results using the BDDC preconditioner introduced 158

in Sect. 4. For each numerical experiment the linear system resulting from the DG 159

discretization is solved iteratively using a Preconditioned Conjugate Gradient (PCG) 160

method, starting from zero initial condition until l2 norm of the residual is decreased 161

by a factor of 1010. The domain Ω = (0,1)2 is partitioned into N×N square subdo- 162

mains Ωi with side lengths H such that N = 1
H . Each subdomain is the union of trian- 163

gular elements obtained by bisecting squares of side length h. In the first numerical 164
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experiment (1) is solved on Ω with ρ = 1 and f chosen such that the exact solution is 165

given by u = sin(πx)sin(πy). Table 3 shows the number of PCG iteration required to 166

converge varying N, H
h and p for each of the DG discretization considered. Table 3 167

also gives the Lanczos estimate of the maximum eigenvalue of the preconditioned 168

system. The minimum eigenvalue is bounded below by unity as with continuous 169

finite element methods. As expected the number of iterations is independent of the 170

number of subdomains and only weakly dependent on the number of elements per 171

subdomain or the solution order. 172

1
H

H
h p IP BR2 Brezzi LDG CDG

2 12 (12.1) 15 (12.0) 15 (7.7) 11 (6.1) 12 (5.9)
4 22 (14.3) 27 (14.0) 23 (9.2) 24 (7.4) 24 (7.1)
8 8 4 31 (15.2) 34 (14.8) 30 (9.8) 28 (7.7) 27 (7.5)
16 33 (15.3) 36 (14.9) 32 (9.9) 29 (8.0) 28 (7.8)
32 33 (15.3) 36 (14.9) 32 (9.9) 29 (7.9) 27 (7.7)

2 25 (10.9) 29 (10.9) 26 (6.9) 23 (5.2) 23 (5.3)
4 29 (13.0) 34 (12.8) 28 (8.3) 26 (6.4) 25 (6.2)

8 8 4 31 (15.2) 34 (14.8) 30 (9.8) 28 (7.8) 27 (7.5)
16 33 (17.6) 36 (17.1) 33 (11.5) 29 (9.3) 29 (9.1)
32 35 (20.2) 38 (19.4) 34 (13.4) 32 (11.0) 31(10.7)

1 32 (11.1) 36 (13.8) 28 (8.1) 26 (5.9) 25 (5.6)
2 31 (12.9) 34 (14.1) 29 (8.7) 26 (6.4) 26 (6.3)

8 8 4 31 (15.2) 34 (14.8) 30 (9.8) 28 (7.8) 27 (7.5)
8 34 (18.4) 37 (16.2) 34 (11.7) 31 (9.9) 32 (9.6)
16 36 (22.5) 38 (18.6) 38 (14.4) 34 (12.8) 36 (12.2)

Table 3. Iteration count (λmax) for BDDC preconditioner using different DG methods

In the second numerical experiment the behaviour of the preconditioner for large 173

jumps in the coefficient ρ is examined. For this numerical experiment only the CDG 174

discretization is used. The domain is partitioned in a checkerboard pattern with ρ = 1 175

on half of the subdomains and ρ = 1,000 in the remaining subdomains. Initially set 176

δ †
i = 1

2 , which corresponds to setting γ = 0, which does not satisfy the assumption 177

γ ∈ [1/2,∞). Poor convergence of the BDDC algorithm is seen in Table 4a. Next δ †
i 178

is set to δ †
i = ρi

ρi+ρ j
which corresponds to γ = 1. With this choice of δ †

i the good 179

convergence properties of the BDDC algorithm is recovered as shown in Table 4b. 180

6 Conclusions 181

The BDDC preconditioner has been extended to a large class of DG discretizations 182

for second-order elliptic problems. The condition number of the BDDC precondi- 183

tioned system is bounded by C(1+ log(p2H/h))2, with constant C independent of 184

p, h, H or the coefficient ρ . This is the same condition number bound previously 185

proven for continuous finite element methods. Numerical results confirm the theory. 186
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(a) δ †
i = 1

2 , H
h = 8

1
H

p 2 4 8 16 32
1 51 119 179 215 232
3 55 133 207 267 316
5 59 153 242 306 361

(b) δ †
i = ρi

ρi+ρ j
, H

h = 8

1
H

p 2 4 8 16 32
1 4 7 14 18 19
3 4 7 15 18 19
5 4 7 14 19 20

Table 4. Iteration count for BDDC preconditioner using the CDG method with ρ=1 or 1000.
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