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Summary. In this paper we study interface equations associated to the Darcy-Stokes problem 8

using the classical Steklov-Poincaré approach and a new one called augmented. We compare 9

these two families of methods and characterize at the discrete level suitable preconditioners 10

with additive and multiplicative structures. Finally, we present some numerical results to as- 11

sess their behavior in presence of small physical parameters. 12

1 Introduction and Problem Setting 13

Let Ω ⊂ R
d (d = 2,3) be a bounded domain decomposed into two non intersect- 14

ing subdomains: Ω f , filled by a viscous incompressible fluid, and Ωp, formed by a 15

porous medium, separated by an interface Γ = Ω̄ f ∩ Ω̄p. The fluid in Ω f has no free 16

surface and it can filtrate through the adjacent porous medium. The motion of the 17

fluid in Ω f is described by the Stokes equations: 18

−ν�u+∇p = f, div u = 0 in Ω f (1)

where ν > 0 is the kinematic viscosity, while u and p are the velocity and pressure. 19

In Ωp we describe the fluid motion by the equations: 20

up =−K∇ϕ , div up = 0 in Ωp (2)

where up is the fluid velocity, ϕ the piezometric head and K the hydraulic conductiv- 21

ity tensor. The first equation is Darcy’s law that provides the simplest linear relation 22

between velocity and pressure in porous media. We can equivalently rewrite (2) as 23

the elliptic equation involving only the piezometric head: 24

−div(K∇ϕ) = 0 in Ωp. (3)

Besides suitable boundary conditions on ∂Ω , we supplement the Darcy-Stokes 25

problem (1), (3) with the following coupling conditions on Γ : 26

−K∇ϕ ·n = u ·n, −n ·T(u, p) ·n = gϕ , −ετττ ·T(u, p) ·n = νu · τττ, (4)
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where T(u, p) is the fluid stress tensor, τττ denotes a set of linear independent unit 27

tangential vectors to Γ and ε is a coefficient related to the characteristic length of 28

the pores of the porous medium. Conditions (4)1 and (4)2 impose the continuity of 29

the normal velocity and of the normal component of the normal stress on Γ . The 30

so-called Beavers-Joseph-Saffman condition (4)3 does not yield any coupling but 31

provides a boundary condition for the Stokes problem since it involves only quanti- 32

ties in the domain Ω f . For more details we refer to [9, 11, 12, 14]. 33

2 Interface Equations Associated to the Darcy-Stokes Problem 34

In [7, 8], we showed that the coupled Darcy-Stokes problem can be reformulated 35

in terms of the solution of equations defined only on the interface Γ involving suit- 36

able Steklov-Poincaré operators associated to the subproblems in Ω f and Ωp. We 37

formally briefly review this approach referring to the cited works for more details. 38

If we select as interface variable λ ∈ H1/2
00 (Γ ) to represent the normal velocity 39

across Γ : λ = u · n = −K∇ϕ · n on Γ , we can express the solution of the Darcy- 40

Stokes problem in terms of the solution of the interface equation: find λ ∈ H1/2
00 (Γ ) 41

such that 42

〈Ssλ ,μ〉+ 〈Sdλ ,μ〉= 〈χs,μ〉+ 〈χd,μ〉 ∀μ ∈ H1/2
00 (Γ ). (5)

Equation (5) imposes the continuity condition (4)2. The linear continuous operators 43

χs and χd depend on the data of the problem and 〈·, ·〉 denotes the duality pairing 44

between H1/2
00 (Γ ) and its dual (H1/2

00 (Γ ))′. Concerning Ss and Sd , we remark that 45

• The operator Ss : H1/2
00 (Γ )→ (H1/2

00 (Γ ))′ maps the space of normal velocities on 46

Γ to the space of normal stresses on Γ through the solution of a Stokes problem 47

in Ω f with boundary condition u ·n = λ on Γ . 48

• Sd maps the space of fluxes of ϕ on Γ to the space of traces of ϕ on Γ via the 49

solution of a Darcy problem in Ωp with the boundary condition −K∇ϕ ·n = λ 50

on Γ . The operator Sd should be a map between H−1/2(Γ ) and H1/2(Γ ), but in 51

(5) we are applying it to H1/2
00 (Γ ), a space with a higher regularity than needed 52

where we cannot guarantee the coercivity of the operator. 53

On the other hand, if we choose as interface unknown η ∈ H1/2(Γ ) the trace 54

of the piezometric head on Γ : η = gϕ|Γ = −n ·T(u, p) ·n on Γ , the Darcy-Stokes 55

problem can be equivalently reformulated as find η ∈ H1/2(Γ ): 56

〈〈S f η ,μ〉〉+ 〈〈Spη ,μ〉〉= 〈〈χ f ,μ〉〉+ 〈〈χp,μ〉〉 ∀μ ∈ H1/2(Γ ), (6)

where χ f and χp are linear continuous operators depending on the data of the prob- 57

lem. Equation (6) imposes the coupling condition (4)1. Here: 58

• The operator S f maps the space of normal stresses on Γ to the space of normal 59

velocities on Γ via the solution of a Stokes problem with the boundary condi- 60

tion −n ·T(u, p) · n = η on Γ . This operator would naturally be defined from 61
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H−1/2(Γ ) to H1/2
00 (Γ ) so that in (6) we are applying it to functions with a higher 62

regularity than needed. 63

• The operator Sp : H1/2(Γ )→ (H1/2(Γ ))′ maps the space of traces of ϕ on Γ 64

to the space of fluxes of ϕ on Γ by solving a Darcy problem in Ωp with the 65

Dirichlet boundary condition gϕ = η on Γ . 66

3 Augmented Interface Equations 67

The classical approach summarized in Sect. 2 leads to reformulate the Darcy-Stokes 68

problem as interface equations depending on a single interface unknown: either λ , 69

the normal velocity across Γ , or η , the piezometric head on Γ . We have remarked 70

that the Steklov-Poincaré operators Sd and S f are not acting on their natural func- 71

tional spaces, but they are assigned functions with higher regularity than expected. 72

This prevents us from guaranteeing their coerciveness (see [7]). In this section we 73

present a different approach based on [3–6] consisting in writing the coupled Darcy- 74

Stokes problem as a system of linear equations on Γ involving both variables λ 75

and η . 76

3.1 The Augmented Dirichlet-Dirichlet Problem 77

To obtain the augmented Dirichlet-Dirichlet (aDD) formulation assume that λ ∈ 78

H1/2
00 (Γ ) is equal to the normal velocity u ·n on Γ , but not necessarily to the conor- 79

mal derivative of ϕ on Γ . On the other hand, let η ∈H1/2(Γ ) be equal to the trace of 80

ϕ on Γ but not to the normal component of the Cauchy stress of the Stokes problem 81

on Γ . Then, to recover the solution of the original Darcy-Stokes problem we have to 82

impose both the continuity of normal velocity and of normal stresses: 83

−∫Γ n ·T(u(λ ), p(λ )) ·n μ =
∫

Γ ημ ∀μ ∈ H1/2
00 (Γ )

−∫Γ K∇ϕ(η) ·nξ =
∫

Γ λ ξ ∀ξ ∈H1/2(Γ ).

Using the definition of the Steklov-Poincaré operators, we can rewrite these con- 84

ditions as: find (λ ,η) ∈H1/2
00 (Γ )×H1/2(Γ ) such that 85

〈Ssλ ,μ〉+ 〈η ,μ〉= 〈χs,μ〉 ∀μ ∈H1/2
00 (Γ )

〈〈Spη ,ξ 〉〉− 〈〈λ ,ξ 〉〉= 〈〈χp,ξ 〉〉 ∀ξ ∈ H1/2(Γ ),
(7)

or, in operator form: 86(
Ss I
−J Sp

)(
λ
η

)
=

(
χs

χp

)
(8)

where I : H1/2(Γ )→ (H1/2
00 (Γ ))′ and J : H1/2

00 (Γ )→ (H1/2(Γ ))′ are linear con- 87

tinuous maps. 88

We call (8) augmented Dirichlet-Dirichlet (aDD) formulation because both func- 89

tions λ and η play the role of Dirichlet boundary conditions for the Stokes and the 90

Darcy subproblems, respectively. Notice that we are imposing the equalities (8) in 91

the sense of dual spaces and that the operators Ss and Sp still act on their natural 92

functional spaces. 93
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3.2 The Augmented Neumann-Neumann Problem 94

We follow now a similar approach to Sect. 3.1, but we assume that λ ∈ H−1/2(Γ ) 95

is equal to the conormal derivative of the piezometric head −K∇ϕ ·n on Γ and η ∈ 96

H−1/2(Γ ) is equal to the normal component of the fluid Cauchy stress on Γ . Then, 97

to recover the solution of the original problem we impose the following equalities: 98

∫
Γ u(η) ·n μ =

∫
Γ λ μ ∀μ ∈H−1/2(Γ )∫

Γ ϕ(λ )ξ =−∫Γ η ξ ∀ξ ∈ H−1/2(Γ ).

Using the definition of the Steklov-Poincaré operators, we can rewrite these con- 99

ditions as: find (λ ,η) ∈H−1/2(Γ )×H−1/2(Γ ) such that 100

〈S f η ,μ〉∗ − 〈λ ,μ〉∗ = 〈χ f ,μ〉∗ ∀μ ∈H−1/2(Γ )

〈〈Sdλ ,ξ 〉〉∗+ 〈〈η ,ξ 〉〉∗ = 〈〈χd ,ξ 〉〉∗ ∀ξ ∈ H−1/2(Γ ),
(9)

corresponding to the operator form: 101

(
Sd I∗
−J∗ S f

)(
λ
η

)
=

(
χd

χ f

)
. (10)

Here I∗ : H−1/2(Γ )→H1/2(Γ ) and J∗ : H−1/2(Γ )→H1/2
00 (Γ ) are linear continu- 102

ous maps, while 〈·, ·〉∗ and 〈〈·, ·〉〉∗ denote the corresponding pairing. 103

We call this formulation augmented Neumann-Neumann (aNN) because both 104

functions λ and η play the role of Neumann boundary conditions for the Darcy 105

and the Stokes subproblems, respectively. 106

The aNN formulation may be regarded as the “dual” of the aDD approach. Notice 107

that the operators S f and Sd are now acting on their natural spaces, differently form 108

the classical setting of Sect. 2. The analysis of problems (8) and (10) can be carried 109

out following the guidelines of [5]. 110

4 Algebraic Formulation of the Interface Problems 111

We consider a finite element discretization of the coupled problem using conforming 112

grids across the interface Γ . The discrete spaces for the Stokes problem satisfy the 113

inf-sup condition. In this way we obtain the linear system: 114

⎛
⎜⎜⎝

F D 0 0
DT AΓ Γ 0 −MΓ
0 0 Cii CiΓ
0 MT

Γ CΓ i CΓ Γ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuui

uuuΓ
ϕϕϕ i
ϕϕϕΓ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

fff f i
fff fΓ
fff pi
fff pΓ

⎞
⎟⎟⎠ (11)

where uuuΓ is the vector of the nodal values of the normal velocity on Γ while uuui is 115

the vector of the remaining degrees of freedom (velocity and pressure) in Ω f . On the 116

other hand, ϕϕϕΓ is the vector of the (unknown) values of ϕ on Γ while ϕϕϕ i corresponds 117

to the remaining degrees of freedom in Ωp. 118
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The discrete counterpart of the Steklov-Poincaré operators can be found comput- 119

ing the Schur complement systems corresponding to either uuuΓ or ϕϕϕΓ . Precisely, we 120

find: 121

Σs = AΓ Γ −DT F−1D, Σ f = MT
Γ Σ−1

s MΓ ,

Σp =CΓ Γ −CΓ iC
−1
ii CiΓ , Σd = MΓ Σ−1

p MT
Γ .

(12)

The characterization of these discrete operators in terms of the associated Darcy or 122

Stokes problems in Ωp and Ω f allows us to provide upper and lower bounds for 123

their eigenvalues. Assuming ν and K constants in Ω f and Ωp, respectively, and the 124

computational mesh to be uniform and regular, we can find (see [7, 13, 15]) (� 125

indicates that the inequalities hold up to constants independent of h, ν , K): 126

hν � σ(Σs)� ν, h2ν−1 � σ(Σ f )� hν−1

hK� σ(Σp)� K, h2K−1 � σ(Σd)� hK−1 (13)

The discrete counterparts of the interface problems (5), (6), (8), and (10) read: 127

• Discrete interface equation for the normal velocity: find uuuΓ such that 128

ΣsuuuΓ +ΣduuuΓ = χχχs + χχχd . (14)

• Discrete interface equation for the piezometric head: find ϕϕϕΓ such that 129

Σ f ϕϕϕΓ +ΣpϕϕϕΓ = χχχ f + χχχ p. (15)

• Discrete aDD problem: find (uuuΓ ,ϕϕϕΓ ) such that 130

(
Σs −MΓ
MT

Γ Σp

)(
uuuΓ
ϕϕϕΓ

)
=

(
χχχ s
χχχ p

)
. (16)

• Discrete aNN problem: find (uuuΓ ,ϕϕϕΓ ) such that 131

(
Σd MΓ
−MT

Γ Σ f

)(
uuuΓ
ϕϕϕΓ

)
=

(
χχχd
χχχ f

)
. (17)

The augmented approach allows to compute both interface variable at once but it 132

requires to solve a system whose dimension is twice the one of the classical methods. 133

5 Iterative Solution Methods and Numerical Results 134

We present now some numerical methods to solve problems (14)–(17) focusing on 135

cases where the fluid viscosity ν and the hydraulic conductivity K are small. These 136

are indeed situations of interest for most practical applications. In [10] a Robin- 137

Robin method was proposed to solve effectively (14). Here we adopt the generalized 138

Hermitian/skew-Hermitian splitting (GHSS) method of [2] for (14) and (15) and the 139

HSS method of [1] for (16) and (17). We start considering (14). 140

The matrix Σs+Σd has no skew-symmetric component being symmetric positive 141

definite, but thanks to the estimates (13) we can mimick the splitting proposed in [2] 142



Page 440

UN
CO

RR
EC

TE
D

PR
O
O
F

Marco Discacciati

considering Σs as a matrix multiplied by a coefficient (ν) which may become small. 143

Thus, we can characterize the preconditioner for (14): 144

P1 = (2α1)
−1(Σs +α1I)(Σd +α1I). (18)

Proceeding analogously for (15), we can characterize the preconditioner 145

P2 = (2α2)
−1(Σp +α2I)(Σ f +α2I). (19)

Preconditioners P1 and P2 involve suitable acceleration parameters α1 and α2 146

and can be used within GMRES iterations. Remark that they can be regarded as 147

generalizations of the Robin-Robin method introduced in [7, 10]. 148

On the other hand, as the matrices in (16) and (17) are positive skew-symmetric 149

with symmetric positive definite diagonal blocks, we apply the HSS splitting pro- 150

posed in [1] separating the symmetric and the skew-symmetric parts of the matrices. 151

Thus, we can characterize the following preconditioners for GMRES iterations for 152

(16) and (17), respectively, with α3, α4 suitable acceleration parameters: 153

P3 = (2α3)
−1
(

Σs +α3I 0
0 Σp +α3I

)(
α3I −MΓ
MT

Γ α3I

)
(20)

154

P4 = (2α4)
−1
(

Σd +α4I 0
0 Σ f +α4I

)(
α4I MΓ
−MT

Γ α4I

)
. (21)

According to [2] these preconditioners are effective when either the skew-symmetric 155

or the symmetric part dominates. Thanks to (13) we can expect that for small ν and 156

K the skew-symmetric part dominates in (16) and the symmetric one in (17). 157

All preconditioners Pi require the solution of a Stokes problem in Ω f and of a 158

Darcy problem in Ωp. However, P1 and P2 have a multiplicative structure while in 159

P3 and P4 the two subproblems may be solved in a parallel fashion. They are all 160

effective when ν and K become small. A thorough study of these preconditioners 161

will make the object of a future work, where also the choice of the parameters αi 162

will be analyzed. For the tests reported in Table 1, following [2], we set α1,α3 
√

ν , 163

α2 
√
K and α4  10−1. However, a better characterization of such parameters is 164

necessary to have a more robust behavior of the preconditioners, independent of both 165

the mesh size and of the coefficients ν and K. 166

In the numerical tests, both the Stokes and the Darcy subproblems are solved 167

via direct methods. The matrices in (20) and (21) involving MΓ and I are assem- 168

bled explicitly and the associated linear systems are solved using direct methods. 169

We consider Ω f = (0,1)× (1,2), Ωp = (0,1)2 with interface Γ = (0,1)×{1} and 170

the analytic solution: u = ((y− 1)2 + (y− 1) + 1,x(x− 1)), p = 2ν(x + y− 1), 171

ϕ = K−1(x(1− x)(y− 1)+ (y− 1)3/3)+ 2νx. A comparison with preconditioners 172

Σs for (14) and Σp for (15) studied in [7] is also presented. Although such precon- 173

ditioners are optimal with unitary ν and K, they perform quite poorly when small 174

viscosities and permeabilities are considered. 175
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