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Summary. We present some recent domain decomposition tools and a BDDC algorithm for 13

3D problems in the space H(curl;Ω). Of primary interest is a face decomposition lemma 14

which allows us to obtain improved estimates for a BDDC algorithm under less restrictive as- 15

sumptions than have appeared previously in the literature. Numerical results are also presented 16

to confirm the theory and to provide additional insights. 17

1 Introduction 18

We investigate a BDDC algorithm for three-dimensional (3D) problems in the space 19

H0(curl;Ω). The subject problem is to obtain edge finite element approximations of 20

the variational problem: Find uuu ∈ H0(curl;Ω) such that 21

aΩ (uuu,vvv) = ( fff ,vvv)Ω ∀vvv ∈H0(curl;Ω), 22

where 23

aΩ (uuu,vvv) :=
∫

Ω
[(α∇×uuu ·∇× vvv)+ (β uuu · vvv)]dx, ( fff ,vvv)Ω =

∫
Ω

fff · vvvdx. 24

The norm of uuu∈H(curl;Ω), for a domain with diameter 1, is given by aΩ(uuu,uuu)1/2
25

with α = 1 and β = 1; the elements of H0(curl) have vanishing tangential compo- 26

nents on ∂Ω . We could equally well consider cases where this boundary condition 27

is imposed only on one or several subdomain faces which form part of ∂Ω . We will 28

assume that α ≥ 0 and β > 0 are constant in each of the subdomains Ω1, . . . ,ΩN . 29

Our results could be presented in a form which accommodates properties which are 30

not constant or isotropic in each subdomain, but we avoid this generalization for 31

purposes of clarity. 32
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In the pioneering work of [12], two different cases were analyzed for FETI-DP 33

algorithms: 34

Case 1: 35

αi = α for i = 1, . . . ,N 36

The condition number bound reported for the preconditioned operator is 37

κ ≤C max
i
(1+H2

i βi/α)(1+ log(H/h))4, (1)

where H/h := maxi Hi/hi. 38

Case 2: 39

βi = β for i = 1, . . . ,N 40

for which the reported condition number bound is 41

κ ≤C max
i
(1+H2

i β/αi)(1+ log(H/h))4. (2)

We address the following basic questions regarding [12] in this study. 42

1. Is is possible to remove the assumption of αi = α or βi = β for all i? 43

2. Is it possible to remove the factor of H2
i βi/αi from the estimates? 44

3. Is is possible to reduce the logarithmic factor from four powers to two powers as 45

is typical of other iterative substructuring algorithms? 46

4. Do FETI-DP or BDDC algorithms for 3D H(curl) problems have certain com- 47

plications not present for problems with just a single parameter? 48

We find in the following sections that the answers are yes to all four questions. How- 49

ever, due to page limitations, we only consider here the relatively rich coarse space 50

of Algorithm C of [12]. We remark that the analysis of 3D H(curl) problems with 51

material property jumps between subdomains is quite limited in the literature. A 52

comprehensive treatment of problems in 2D can be found in [3]. A different iterative 53

substructuring algorithm for 3D problems is given in [6], but the authors were un- 54

able to conclude whether their condition number bound was independent of material 55

property jumps. A related study on substructuring preconditioners can also be found 56

in [7]. 57

2 Tools 58

We assume that Ω is decomposed into N non-overlapping subdomains, Ω1, . . . ,ΩN , 59

each the union of elements of the triangulation of Ω . We denote by Hi the diameter 60

of Ωi. The interface of the domain decomposition is given by 61

Γ :=

(
N⋃

i=1

∂Ωi

)
\∂Ω , 62
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and the contribution to Γ from ∂Ωi by Γi := ∂Ωi\∂Ω . These sets are unions of 63

subdomain faces, edges, and vertices. For simplicity, we assume that each subdomain 64

is a shape-regular and convex tetrahedron or hexahedron with planar faces. 65

We assume a shape-regular triangulation Thi of each Ωi with nodes matching 66

across the interfaces. The smallest element diameter of Thi is denoted by hi. Associ- 67

ated with the triangulation Thi are the two finite element spaces W hi
grad ⊂H(grad,Ωi) 68

and W hi
curl ⊂ H(curl,Ωi) based on continuous, piecewise linear, tetrahedral nodal ele- 69

ments and linear, tetrahedral edge (Nédeléc) elements, respectively. We could equally 70

well develop our algorithms and theory for low order hexahedral elements. 71

The energy of a vector function uuu ∈W hi
curl for subdomain Ωi is defined as 72

Ei(uuu) := αi(∇×uuu,∇×uuu)Ωi +βi(uuu,uuu)Ωi , (3)

where αi and βi are assumed constant in Ωi. 73

Let NNNe ∈W hi
curl and ttte denote the finite element shape function and unit tangent 74

vector, respectively, for an edge e of Thi . We assume that NNNe is scaled such that 75

NNNe ·ttte = 1 along e. The edge finite element interpolant of a sufficiently smooth vector 76

function uuu ∈ H(curl,Ωi) is then defined as 77

Π hi(uuu) := ∑
e∈MΩ̄i

ueNNNe, ue := (1/|e|)
∫

e
uuu · ttte ds, (4)

where MΩ̄i
is the set of edges of Thi , and |e| is the length of e. We will also make use 78

of other sets of edges of Thi . Namely, M∂Ωi
, ME , MF , and M∂F contain the edges 79

of ∂Ωi, subdomain edge E , subdomain face F , and ∂F , respectively. We denote 80

by GiF , GiE , and GiV sets of subdomain faces, subdomain edges, and subdomain 81

vertices for Ωi. The wire basket Wi is the union of all subdomain edges and vertices 82

for Ωi. We will also make use of the symbol ωi := 1+ log(Hi/hi), and bold faced 83

symbols refer to vector functions. We denote by p̄i the mean of pi over Ωi. 84

The estimate in the next lemma can be found in several references, see e.g., 85

Lemma 4.16 of [13]. 86

Lemma 1. For any pi ∈W hi
grad and subdomain edge E of Ωi, 87

‖pi‖2
L2(E ) ≤Cωi‖pi‖2

H1(Ωi)
. (5)

88

Lemma 2. For any pi ∈W hi
grad, there exist piV , piE , piF ∈W hi

grad such that 89

pi|∂Ωi
= ∑

V ∈GiV

piV |∂Ωi
+ ∑

E∈GiE

piE |∂Ωi
+ ∑

F∈GiF

piF |∂Ωi
, (6)

where the nodal values of piV , piE , and piF on ∂Ωi may be nonzero only at the 90

nodes of V , E , and F , respectively. Further, 91
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|piV |2H1(Ωi)
≤C‖pi‖2

H1(Ωi)
, (7)

|piE |2H1(Ωi)
≤Cωi‖pi‖2

H1(Ωi)
, (8)

|piF |2H1(Ωi)
≤Cω2

i ‖pi‖2
H1(Ωi)

. (9)

92

Proof. The estimates in (7)–(9) are standard, and follow from Corollary 4.20 and 93

Lemma 4.24 of [13] and elementary estimates. 94

We note that a Poincaré inequality allows us to replace the H1-norm of pi by its 95

H1-seminorm in Lemmas 1 and 2 if p̄i = 0. 96

The next lemma is stated without proof due to page restrictions. 97

Lemma 3. Let fi ∈W hi
grad have vanishing nodal values everywhere on ∂Ωi except on 98

the wire basket Wi of Ωi. For each subdomain face F of Ωi and Chi ≤ d ≤ Hi/C, 99

C > 1, there exists a vvvi ∈W hi
curl such that vie = ∇ fie for all e ∈MF , vie = 0 for all 100

other edges of ∂Ωi, and 101

‖vvvi‖2
L2(Ωi)

≤C(ωi‖ fi‖2
L2(∂F ) + d2‖∇ fi · ttt∂F‖2

L2(∂F )), (10)

‖∇× vvvi‖2
L2(Ωi)

≤C(τ(d)‖ fi‖2
L2(∂F )

+ ‖∇ fi · ttt∂F ‖2
L2(∂F )

), (11)

where ttt∂F is a unit tangent along ∂F , and 102

τ(d) =
{

0 if d > Hi/C
d−2 otherwise.

103

104

The Helmholtz-type decomposition and estimates in the next lemma will allow 105

us to make use of and build on existing tools for scalar functions in H1(Ωi). We refer 106

the reader to Lemma 5.2 of [4] for the case of convex polyhedral subdomains; this 107

important paper was preceded by Hiptmair et al. [5], which concerns other applica- 108

tions of the same decomposition. 109

Lemma 4. For a convex and polyhedral subdomain Ωi and any uuui ∈W hi
curl, there is a 110

qqqi ∈W hi
curl, ΨΨΨ i ∈ (W hi

grad)
3, and pi ∈W hi

grad such that 111

uuui = qqqi +Π hi(ΨΨΨ i)+∇pi, (12)

‖∇pi‖L2(Ωi)
≤C‖uuui‖L2(Ωi)

, (13)

‖ΨΨΨ i‖L2(Ωi)
≤C‖uuui‖L2(Ωi)

, (14)

‖h−1
i qqqi‖2

L2(Ωi)
+ ‖ΨΨΨ i‖2

H1(Ωi)
≤C‖∇×uuui‖2

L2(Ωi)
. (15)

112
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Lemma 5. For any uuui ∈W hi
curl with uie = 0 for all e∈M∂F , there exists a vvviF ∈W hi

curl 113

such that viFe = uie for all e ∈MF , viFe = 0 for all e ∈M∂Ωi
\MF , and 114

Ei(vvviF )≤Cω2
i Ei(uuui), (16)

where the energy Ei is defined in (3). 115

Proof. Let pi in (12) be chosen so p̄i = 0. This is possible since a constant can be 116

added to pi without changing its gradient. Because uie = 0 for all e∈M∂F , it follows 117

from Lemmas 1 and 4 and elementary estimates that 118

‖∇pi · tttE ‖2
L2(∂F ) = ‖(Π hi(ΨΨΨ iii)+ qqqi) · tttE ‖2

L2(∂F )

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (17)

We then find from Lemmas 2 and 4 that 119

‖∇piF‖2
L2(Ωi)

≤Cω2
i ‖uuui‖2

L2(Ωi)
. (18)

Define 120

piW := ∑
V ∈GiV

piV + ∑
E∈GiE

piE , d :=

{
Hi if di ≥ Hi

max(di,Chi) otherwise,
121

where di :=
√

αi/βi. Further, let piW and pppiF denote the functions fi and vvvi, respec- 122

tively, of Lemma 3. We then find from Lemmas 1 and 3 and (17) that 123

Ei(pppiF )≤Cω2
i Ei(uuui), (19)

where piFe = ∇piW e ∀e ∈MF and piFe = 0 ∀e ∈M∂Ωi
\MF . With reference to 124

(12) and (4), we define 125

qqqiF := ∑
e∈MF

qieNNNe, (20)

and from elementary finite element estimates and Lemma 4 find 126

‖qqqiF ‖2
L2(Ωi)

≤Ch3
i ∑

e∈MF

q2
ie ≤C‖qqqi‖2

L2(Ωi)
≤C‖uuui‖2

L2(Ωi)
, (21)

‖∇×qqqiF ‖2
L2(Ωi)

≤Chi ∑
e∈MF

q2
ie ≤C‖∇×uuui‖2

L2(Ωi)
. (22)

It follows from Lemmas 2 and 4 that there exists a ΨΨΨ iF ∈ (W hi
grad)

3 such that ΨΨΨ iF = 127

ΨΨΨ i at all nodes of F , that vanishes at all other nodes of ∂Ωi, and 128

‖ΨΨΨ iF‖2
L2(Ωi)

≤C‖ΨΨΨ i‖2
L2(Ωi)

≤C‖uuui‖2
L2(Ωi)

, (23)

‖∇×ΨΨΨ iF‖2
L2(Ωi)

≤Cω2
i ‖ΨΨΨ i‖2

H1(Ωi)
≤Cω2

i ‖∇×uuui‖2
L2(Ωi)

. (24)

From Lemmas 1 and 4, we obtain 129



Page 20

UN
CO

RR
EC

TE
D

PR
O
O
F

Clark R. Dohrmann and Olof B. Widlund

‖ΨΨΨ i‖2
L2(∂F ) ≤Cωi‖ΨΨΨ i‖2

H1(Ωi)
≤Cωi‖∇×uuui‖2

L2(Ωi)
. (25)

Let ΨΨΨ i∂F ∈ (W hi
grad)

3 be identical to ΨΨΨ i at all nodes of ∂F and vanish at all other 130

nodes of Ωi. For ggg := Π hi(ΨΨΨ i∂F ), we define 131

gggiF := ∑
e∈MF

ghi
e NNNe. (26)

From elementary estimates and (25,) we then obtain 132

‖gggiF ‖2
L2(Ωi)

≤Ch2
i |ΨΨΨ i‖2

L2(∂F ) ≤Cωih
2
i ‖∇×uuui‖2

L2(Ωi)
, (27)

‖∇×gggiF ‖2
L2(Ωi)

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (28)

Defining 133

vvviF := ∇piF + pppiF + qqqiF +Π hi(ΨΨΨ iF )+ gggiF , (29)

we find that viFe = uie ∀e ∈MF and viFe = 0 ∀e ∈M∂Ωi
\MF . The estimate in 134

(16) then follows from the bounds for each of the terms on the right-hand-side of 135

(29) along with elementary estimates for Π hi(ΨΨΨ iF ). � 136

3 BDDC 137

Background information and related theory for BDDC can be found in several refer- 138

ences including [1, 2, 9–11]. Let ui and u denote vectors of finite element coefficients 139

associated with Γi and Γ . In general, entries in ui and u j are allowed to differ for j �= i 140

even though they refer to the same finite element edge. Entries in the vector ũi are 141

partially continuous in the sense that specific edge values or edge averages over cer- 142

tain subsets of Γ are required to match for adjacent subdomains. In order to obtain 143

consistent entries, we define the weighted average 144

ûi = Ri

N

∑
j=1

RT
j D jũ j, (30)

where R j is a 0–1 (Boolean) matrix that selects the rows of u j from u and D j is a 145

weight matrix. The weight matrices form a partition of unity in the sense that 146

N

∑
i=1

RT
i DiRi = I, (31)

where I is the identity matrix. To summarize, ûi is fully continuous while ũi is only 147

partially continuous. The number of continuity constraints that must be satisfied by 148

all the ũi determines the dimension of the coarse space. 149

The energy of uuu for Ωi can be expressed as 150

Ei(uuu) = Ei(ui) = uT
i Siui, (32)
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where Si is the Schur complement matrix associated with Ωi and Γi. The system 151

operator for BDDC is the assembled Schur complement 152

S =
N

∑
i=1

RT
i SiRi. (33)

From Theorem 25 of [11], the condition number of the BDDC preconditioned oper- 153

ator is bounded above by 154

κ(M−1S)≤ sup
ũi

∑N
i=1 ûT

i Siûi

∑N
i=1 ũT

i Siũi
. (34)

This remarkably simple expression shows that the continuity constraints for ũi should 155

be chosen so that large increases in energy do not result from the averaging operation 156

in (30). 157

Let Ri∂Fi j
select the rows of ui corresponding to the edge coefficients on the 158

boundary of the face Fi j, the closure of which is ∂Ωi ∩ ∂Ω j. Similarly, let RiFi j 159

select the rows of ui corresponding to the interior of the face Fi j. We define the 160

vector of face edge coefficients by uiF := RiFi j ui and the face Schur complement 161

matrix by SiFF := RiFi j SiRT
iFi j

. 162

Because of page restrictions, we only consider a very rich coarse space which 163

includes every edge variable of each subdomain edge. This coarse space corresponds 164

to Algorithm C of [12]. For this case, we choose the weighted average of uiF and u jF 165

as 166

ûF = (SiFF + S jFF)
−1(SiFF uiF + S jFF u jF). (35)

Thus, 167

uiF − ûF = (SiFF + S jFF)
−1S jFF(uiF −u jF). (36)

Using the eigenvectors of the generalized eigenvalue problem SiFF x = λ S jFF x as a 168

convenient basis, we find 169

uT
kF S̄iFFukF ≤ uT

kF SkFF ukF , ∀ukF k ∈ {i, j}, (37)

where 170

S̄iFF := S jFF(SiFF + S jFF)
−1SiFF(SiFF + S jFF)

−1S jFF (38)

Let us assume for the moment that there are vectors ui j, u ji, and a scalar Ĉ > 0 such 171

that 172

Ri∂Fi j
ui j = R j∂Fi j

u ji = u∂F , (39)

RiFi j ui j = R jFi j u ji, (40)

uT
i jSiui j + uT

jiS ju ji ≤ Ĉ(uT
i Siui + uT

j S ju j). (41)

In other words, ui j, u ji, ui and u j are all identical along the boundary of Fi j . Further, 173

ui j and u ji are identical in the interior of Fi j, and the sum of their energies is bounded 174

uniformly by the sum of the energies of ui and u j. 175
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In order to establish a condition number bound for Algorithm C, we need an esti- 176

mate for Ei(RT
iFi j

(uiF− ûF)); see (34). By construction, we have Ri∂Fi j
(ui−ui j) = 0 177

and R j∂Fi j
(u j−u ji) = 0. Since uiF−u jF =(uiF−ui jF)−(u jF−u jiF), it then follows 178

from (36), (37), (41), and Lemma 5 that 179

Ei(R
T
iFi j

(uiF − ûF)) =Ei(R
T
iFi j

(SiFF + S jFF)
−1S jFF(uiF −u jF))

≤2(uiF −ui jF)
T SiFF(uiF −ui jF)+

2(u jF −u jiF)
T S jFF(u jF −u jiF)

≤ ĈCω2
i (Ei(ui)+E j(u j)). (42)

We are able to show there exist ui j and u ji which satisfy the conditions in (39)–(41) 180

with Ĉ independent of mesh parameters and the material properties αi, βi, α j, and β j 181

under the assumption 182

αm ≤Cαn and βm ≤Cβn for {m,n}= {i, j} or {m,n}= { j, i}. (43)

This can be done using Lemma 4 together with an extension theorem for H1 func- 183

tions on Lipschitz domains. We note that numerical experiments suggest that no 184

assumptions on subdomain material properties are needed, other than them being 185

constant in each subdomain, for Ĉ in (41) to be uniformly bounded. 186

Our main result follows from the estimate in (42). 187

Theorem 1 (Condition Number Estimate). Under the assumption in (43), the con- 188

dition number of the BDDC preconditioned operator for this study is bounded by 189

κ ≤Cω2, (44)

where 190

ω = max
i
(1+ log(Hi/hi)). (45)

In summary, we have obtained a favorable condition number estimate with less re- 191

strictive assumptions on the material properties of the subdomains than in previous 192

studies. Comparing the condition number estimate of Theorem 1 with those in (1) 193

and (2), we see that the factor of H2
i βi/αi can be removed provided the assumption 194

in (43) holds. In addition, the logarithmic factor has been reduced from four pow- 195

ers to two. We note that the estimate in Theorem 1 also holds for FETI-DP due its 196

spectral equivalence with BDDC. 197

We note that the algorithm involves a non-standard averaging given by (35). This 198

averaging requires the solution of Dirichlet problems over the union of each pair of 199

subdomains sharing a face. The importance of this method of averaging for some 200

problems is shown in the next section. 201

4 Numerical Results 202

In this section, we present some numerical results to verify the theory and also to 203

provide some additional insights. The domain is a unit cube discretized into smaller 204
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cubic elements. All the examples are solved to a relative residual tolerance of 10−8
205

for random right-hand-sides using the conjugate gradient algorithm with BDDC as 206

the preconditioner. The number of iterations and condition number estimates from 207

conjugate gradients are under the headings of iter and cond in the tables. We con- 208

sider three different types of weights for the averaging operator. The first one, des- 209

ignated SC, is the one based on (35). Unless otherwise specified in the tables, this 210

is the weighting used. The second type, stiff, is based on a conventional approach 211

in which the weights are proportional to the entries on the diagonals of subdomain 212

matrices. The third, card, uses the inverse of the cardinality of an edge, i.e. the recip- 213

rocal of the number of subdomains sharing the edge, for the weight. 214

The results in Table 1 are consistent with theory, suggesting condition numbers 215

that are bounded independently of the number of subdomains, while the results in 216

Table 2 are consistent with the log(H/h)2 estimate of Theorem 1. 217

We also consider a checkerboard distribution of material properties in which 218

(α,β ) for a subdomain is either (α1,β1) or (α2,β2), and note that subdomains with 219

the same properties only share a subdomain vertex and no degrees of freedom. Re- 220

sults for 64 cubic subdomains each with H/h = 4 are shown in Table 3. Notice that 221

for only one choice of material properties in the table do all three types of weighting 222

lead to small condition numbers, and only the SC approach always gives condition 223

numbers which are independent of the material properties. We have also investigated 224

another type of weighting similar to card, but with weights γ , 0 < γ < 1 for faces of 225

subdomains with properties α1,β1 and 1− γ for faces of subdomains with proper- 226

ties α2,β2. Regardless of the choice of γ , large condition numbers were observed for 227

the coefficients of the final row of Table 3. We note also that the choice of material 228

properties in the final row is not covered by the theory of [12]. 229

In the final example, we consider a cubic mesh of 203 elements that is partitioned 230

into different numbers of subdomains using the graph partitioner Metis [8]. Although 231

this example is not covered by our theory because the subdomains have irregular 232

shapes, the results in Table 4 indicate that the algorithm of this study continues to 233

perform well. The results in Tables 3 and 4 suggest that the SC weighting of this 234

study may be necessary in order to effectively solve problems with material property 235

jumps or with subdomains of irregular shape. 236

Table 1. Results for N cubic subdomains, each with β = 1 and H/h = 4.

N α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

43 15 (2.70) 14 (2.63) 10 (1.77)
63 16 (2.88) 15 (2.81) 11 (2.05)
83 16 (2.95) 15 (2.87) 12 (2.23)
103 17 (2.98) 16 (2.91) 13 (2.33)
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Table 2. Results for 64 cubic subdomains, each with β = 1.

H/h α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

4 15 (2.70) 14 (2.63) 10 (1.77)
6 17 (3.30) 16 (3.21) 11 (2.14)
8 18 (3.77) 16 (3.66) 13 (2.46)
10 19 (4.16) 18 (4.03) 13 (2.72)

Table 3. Checkerboard material property results for 64 cubic subdomains with H/h = 4.

α1 β1 α2 β2 SC stiff card
iter (cond) iter (cond) iter (cond)

1 1 103 1 10 (1.59) 19 (4.57) 196 (1.64e3)
1 1 1 103 11 (1.96) 84 (2.69e2) 109 (4.72e2)
1 1 1 1.01 14 (2.63) 14 (2.63) 14 (2.63)
102 10−2 1 1 6 (1.07) 65 (3.17e2) 74 (1.65e2)

Table 4. Results for 203 elements partitioned into N subdomains using a graph partitioner.
Material properties are constant with α = 1 and β = 1.

N SC stiff card
iter (cond) iter (cond) iter (cond)

60 19 (4.30) 189 (6.31e2) 24 (9.06)
65 19 (4.40) 184 (6.34e2) 29 (1.55e3)
70 18 (3.89) 188 (6.47e2) 23 (7.48)
75 19 (4.16) 176 (6.12e2) 23 (6.49)
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