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1 Introduction 11

Coarse space correction is essential to achieve algorithmic scalability in domain de- 12

composition methods. Our goal here is to build a robust coarse space for Schwarz– 13

type preconditioners for elliptic problems with highly heterogeneous coefficients 14

when the discontinuities are not just across but also along subdomain interfaces, 15

where classical results break down [3, 6, 9, 15]. 16

In previous work, [7], we proposed the construction of a coarse subspace based 17

on the low-frequency modes associated with the Dirichlet-to-Neumann (DtN) map 18

on each subdomain. A rigorous analysis was recently provided in [2]. Similar ideas 19

to build stable coarse spaces, based on the solution of local eigenvalue problems 20

on entire subdomains, can be found in [4], and even traced back to similar ideas 21

for algebraic multigrid methods in [1]. However, we will argue below that the DtN 22

coarse space presented here is better designed to deal with coefficient variations that 23

are strictly interior to the subdomain, being as robust as, but leading to a smaller 24

dimension than the coarse space analysed in [4]. 25

The robustness result that we obtain, generalizes the classical estimates for over- 26

lapping Schwarz methods to the case where the coarse space is richer than just the 27

constant mode per domain [8], or other classical coarse spaces (cf. [15]). The analysis 28

is inspired by that in [4, 13] and crucially uses the framework of weighted Poincaré 29

inequalities, introduced in [10, 11] and successfully applied also to other methods in 30

[12, 14]. 31

2 Two-Level Schwarz Method with DtN Coarse Space 32

We consider the variational formulation of a second order, elliptic boundary value 33

problem with Dirichlet boundary conditions: Find u∗ ∈ H1
0 (Ω), for a given domain 34
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Ω ⊂ R
d (d = 2 or 3) and a source term f ∈ L2(Ω), such that 35

a(u∗, v)≡
∫

Ω
α(x) ∇u∗ ·∇v =

∫
Ω

f v≡ ( f , v) , ∀v ∈H1
0 (Ω), (1)

and the diffusion coefficient α = α(x) is a positive piecewise constant function that 36

may have large variations within Ω . 37

We consider a discretization of the variational problem (1) with continuous, 38

piecewise linear finite elements (FE). For a shape regular, simplicial triangulation 39

Th of Ω , the standard space of continuous and piecewise linear functions (w.r.t Th) 40

is then denoted by Vh. The subspace of functions from Vh that vanish on the bound- 41

ary of Ω is denoted by Vh,0. The discrete FE problem that we want to solve is: Find 42

uh ∈Vh,0 such that 43

a(uh,vh) = ( f ,vh), ∀vh ∈Vh,0. (2)

Given the usual nodal basis {φi}n
i=1 for Vh,0 consisting of “hat” functions with n := 44

dim(Vh,0), (2) can be compactly written as 45

Au = f, with Ai j := a(φ j,φi) and fi = ( f ,φi), i, j = 1, . . . ,n, (3)

where u and f are respectively the vector of coefficients corresponding to the un- 46

known FE function uh in (2) and to the r.h.s function f . 47

Two-level Schwarz type methods for (2) are now constructed by choosing an 48

overlapping decomposition {Ω j}J
j=1 of Ω with a subordinate partition of unity 49

{χ j}J
j=1, as well as a suitable coarse subspace VH ⊂ Vh,0. In practice the overlap- 50

ping subdomains Ω j can be constructed automatically given the system matrix A by 51

using a graph partitioner, such as METIS, and adding on a number of layers of fine 52

grid elements to the resulting nonoverlapping subdomains. A suitable partition of 53

unity can be constructed from the geometric information of the fine grid. For more 54

details see e.g. [15] or [2]. We assume that each point x ∈ Ω is contained in at most 55

N0 subdomains Ω j. 56

The crucial ingredient to obtain robust two-level methods for problems with het- 57

erogeneous coefficients is the choice of coarse space VH ⊂Vh,0. Let us assume for the 58

moment that we have such a space VH and a restriction operator R0 from Vh,0 to VH 59

and define restriction operators R j from functions in Vh,0 to functions in Vh,0(Ω j), or 60

from vectors in R
n to vectors in R

dimVh,0(Ω j), by setting (R ju)(xi) = u(xi) for every 61

grid point xi ∈ Ω j. The two-level overlapping additive Schwarz preconditioner for 62

(3) is then simply 63

M−1
AS,2 = ∑J

j=0 RT
j A−1

j R j where A j := R jART
j , j = 0, . . . ,J. (4)

In the classical algorithm VH consists simply of FEs on a coarser triangulation 64

TH of Ω and RH is the canonical restriction from Vh,0 to VH , leading to a fully scal- 65

able iterative method with respect to mesh/problem size (provided the overlap size is 66

proportional to the coarse mesh size H). However, unfortunately this preconditioner 67

is not robust to strong variations in the coefficient α . We will now present a new, 68



Page 87

UN
CO

RR
EC

TE
D

PR
O
O
F

Two-Level Schwarz for Heterogeneous Problems

completely local approach to construct a robust coarse space, as well as an asso- 69

ciated restriction operator using eigenvectors of local Dirichlet-to-Neumann maps, 70

proposed in [7]. 71

We start by constructing suitable local functions on each subdomain Ω j that will 72

then be used to construct a basis for VH . To this end, let us fix j ∈ {1, . . . ,J} and 73

first consider at the continuous level the Dirichlet-to-Neumann map DtN j on the 74

boundary of Ω j. Let Γj := ∂Ω j and let vΓ : Γj → R be a given function, such that 75

vΓ |∂Ω = 0 if Γj ∩∂Ω 	= /0. We define 76

DtN j(vΓ ) := α
∂v
∂ν j

∣∣∣∣
Γj

, 77

where ν j is the unit outward normal to Ω j on Γj, and v satisfies 78

−div(α∇v) = 0 in Ω j, v = vΓ on Γ . (5)

The function v is the α–harmonic extension of the boundary data vΓ to the interior 79

of Ω j. 80

To construct the (local) coarse basis functions, we now find the low frequency 81

modes of the Dirichlet-to-Neumann operator DtN j with respect to the weighted L2– 82

norm on Γj, i.e. the smallest eigenvalues of 83

DtN j(v
( j)
Γ ) = λ ( j) αv( j)

Γ . (6)

Then we extend each of these modes v( j)
Γ α–harmonically to the whole domain and 84

let v( j) be its extension. This is equivalent to the Steklov eigenvalue problem of 85

looking for the pair (v( j),λ ( j)) which satisfies: 86

−div(α∇v( j)) = 0 in Ω j and α
∂v( j)

∂ν j
= λ αv( j) on Γj. (7)

The variational formulation of (7) is to find (v( j),λ ( j)) ∈ H1(Ω j)×R such that 87

∫
Ω j

α∇v( j) ·∇w = λ ( j)
∫

Γj

tr jα v( j)w , ∀w ∈H1(Ω j), (8)

where tr jα(x) :=limy∈Ω j→x α(y). To discretize this generalized eigenvalue problem, 88

we consider for all v,w ∈H1(Ω j) the bilinear forms 89

a j(v,w) :=
∫

Ω j

α∇v ·∇w and m j(v,w) :=
∫

Γj

tr jαvw 90

and restrict (8) to the FE space Vh(Ω j). The coefficient matrices associated with the 91

variational forms a j and m j are 92

A( j)
kl :=

∫
Ω j

α∇φk ·∇φl and M( j)
kl :=

∫
Γj

tr jαφk φl , 93
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where φk and φl are any two nodal basis functions for Vh(Ω j) associated with vertices 94

of Th contained in Ω j. Then the FE approximation to (8) in matrix notation is 95

A( j)v( j) = λ ( j)M( j)v( j) (9)

where v( j) ∈ R
n j , n j := dimVh(Ω j), denotes the degrees of freedom of the FE ap- 96

proximation to v( j) in Vh(Ω j). 97

Let the n j eigenpairs (λ ( j)
� ,v�)

n j
�=1 corresponding to (9) be numbered in increasing 98

order of λ ( j)
� . Since M( j)

kl 	= 0 only if φk and φl are associated with the nΓ vertices 99

of Th that lie on Γj, it is easy to see that at most nΓ of the eigenvalues λ ( j)
� are 100

finite. Moreover, the smallest eigenvalue λ ( j)
1 = 0 with constant eigenvector and the 101

set of eigenvectors {v�}n j
�=1 can be chosen so that they are A( j)–orthonormal. The 102

local coarse space is now defined as the span of the FE functions v( j)
� ∈ Vh(Ω j), 103

� ≤ m j ≤ nΓ , corresponding to the first m j eigenpairs of (9). For each subdomain 104

Ω j, we choose the value of m j such that λ ( j)
� < diam(Ω j)

−1, for all � ≤ m j, and 105

λ ( j)
mj+1 ≥ diam(Ω j)

−1. We will see in the analysis in the next section why this is a 106

sensible choice. 107

Using the partition of unity {χ j}J
j=1, we now combine the local basis functions 108

constructed in the previous section to obtain a conforming coarse space VH ⊂Vh,0 on 109

all of Ω . The new coarse space is defined as 110

VH := span
{

Ih

(
χ jv

( j)
�

)
: 1≤ j ≤ J and 1≤ �≤ m j

}
, (10)

where Ih is the standard nodal interpolant onto Vh,0(Ω). The dimension of VH is 111

∑J
j=1 m j. By construction each of the functions Ih

(
χ jv

( j)
�

) ∈ Vh0 , so that as required 112

VH ⊂ Vh,0. The transfer operator R0 from Vh0 to VH is defined in a canonical way by 113

setting RT
0 uH(xi) = uH(xi), for all uH ∈VH and for all vertices xi of Th. 114

We will see in the next section that under some mild assumptions on the variabil- 115

ity of α this choice of coarse space leads to a scalable and coefficient-robust domain 116

decomposition method with supporting theory. 117

3 Conditioning Analysis 118

To analyse this method let us first define the boundary layer Ω ◦j := {x∈Ω j : χ j(x)< 119

1} for each Ω j that is overlapped by neighbouring domains, i.e. We assume that this 120

layer is uniformly of width ≥ δ j, in the sense that it can be subdivided into shape 121

regular regions of diameter δ j, and that the triangulation Th resolves it. This also 122

guarantees that it is possible to find a partition of unity such that |χ j| = O(1) and 123

|∇χ j|= O(δ−1
j ). 124

We now state the key assumption on the coefficient distribution α(x). 125

Assumption 1 We assume that, for each j = 1, . . . ,J, there exists a set Xj ⊂ Γj (not 126

necessarily connected) such that (i) maxx,y∈Xk
α(x)
α(y) =O(1) and (ii) there exists a path 127
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Py from each y ∈Ω j to Xj, such that α(x) is an increasing function along Py (from y 128

to Xj). 129

Lemma 1 (weighted Poincaré inequality [10]). Let Assumption 1 hold. 130∫
Ω◦j

α|v− vXj |2 ≤ CP δ j

∫
Ω◦j

α|∇v|2, for all v ∈Vh(Ω j),

where vXj := 1
|Xj |

∫
Xj

v. 131

Remark 1. Note that Assumption 1 is related to the classical notion of quasi-mono- 132

tonicity coined in [3]. It ensures that the constant CP in the Poincaré-type inequality 133

in Lemma 1, as well as all the other (hidden) constants below are independent of the 134

values of the coefficient function α(x). The constants may however depend logarith- 135

mically or linearly on δ j/h. This depends on the geometry and shape of the paths Py 136

and on the size and shape of the set Xj. For more details see [2] and [10, 11]. 137

The following proposition [2, Theorem 3.2] is the central result in our analysis. 138

It proves the stability and a weak approximation property for a local projection onto 139

the span of the first m j eigenvectors. 140

Proposition 1. Let Assumption 1 hold, and for any u ∈Vh(Ω j), define the projection 141

Π ju := ∑
mj
�=1 a j(v

( j)
� ,u)v( j)

� . Then 142

|Π ju|a,Ω j ≤ |u|a,Ω j and (11)

‖u−Π ju‖0,α ,Ω◦j �
√

c j(m j)δ j |u|a,Ω j . (12)

where c j(m j) :=C2
P +

(
δ jλ

( j)
mj+1

)−1
. 143

As usual (cf. [15]), the following condition number bound can then be obtained 144

via abstract Schwarz theory by constructing a stable splitting. 145

Theorem 1. Let Assumption 1 be satisfied. Then the condition number of the two- 146

level Schwarz algorithm with the coarse space VH based on local DtN maps and 147

defined in (10) can be bounded by 148

κ(M−1
AS,2A) � J

max
j=1
{c j(m j)} � C2

P +
J

max
j=1

(
δ jλ

( j)
mj+1

)−1
. 149

The hidden constant is independent of h, δ j , diam(Ω j), and α . 150

Proof. We construct a stable splitting for a function u ∈ Vh,0 using the projections 151

Π j, j = 1, . . . ,J, in Proposition 1 to define the coarse quasi-interpolant 152

u0 := Ih

(
∑J

j=1 χ jΠ ju|Ω j

)
∈VH . (13)

If we now choose u j := Ih(χ j(u−Π ju)) ∈Vh,0(Ω j), then 153

u = ∑J
j=0 u j and ∑J

j=0

∫
Ω

α|∇u j|2 � J
max
j=1
{c j(m j)}

∫
Ω

α|∇u|2 154

For details see the proof of [2, Theorem 3.5]. 155
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Remark 2. Note that by choosing the number m j of modes per subdomain such that 156

λ ( j)
mj+1 ≥ diam(Ω j)

−1, as stated in Sect. 2, we have 157

κ(M−1
AS,1A)�

(
C2

P +max j diam(Ω j)/δ j
)
. 158

Hence, provided the constant CP is uniformly bounded, independently of any jumps 159

in the coefficients, we retrieve the classical estimate for the two-level additive 160

Schwarz method independently of any variations of coefficients across or along sub- 161

domain boundaries. 162

4 Numerical Results 163

We choose Ω = (0,1)2 and discretize (1) on a uniform grid with 2m2 elements, 164

setting u = 0 on the left hand boundary and ∂u
∂ν = 0 on the remainder. We use METIS 165

to split the domain into 16 irregular subdomains as shown in Fig. 1 and construct the 166

overlapping partition by extending each subdomain by one layer of fine grid elements 167

using Freefem++ [5]. 168

As the coarse space we use the DtN coarse space described in Sect. 2 with m j 169

chosen such that λ ( j)
mj < diam(Ω j)

−1 ≤ λ ( j)
mj+1, for all j = 1, . . . ,16 (labelled D2N). 170

We compare this preconditioner with the one-level additive Schwarz method (la- 171

belled NONE) and the two-level method with partition of unity coarse space, i.e. 172

choosing m j = 1 for all j (labelled POU). To confirm in some sense the optimality 173

of our choice for m j, we also include results with the DtN coarse space choosing 174

m j +1 and max{1,m j−1} basis functions per subdomain (labelled D2N+ and D2N-, 175

respectively). We use the preconditioners within a conjugate gradient iteration with 176

tolerance 10−7. 177

In the first test case (Example 1), we choose m = 160 and α as depicted in 178

Fig. 2, i.e. 25 high permeability inclusions and one channel. In the second test case 179

(Example 2), we choose m= 80 and α to be a realization of a log-normal distribution 180

with exponential covariance function (variance σ2 = 4 and correlation length λ = 181

4/m) and mean of logα equal 3 (cf. Fig. 3). 182

In Fig. 4 we plot ‖u− ū‖∞ for Example 1 against the iteration count, where ū is 183

the solution of (3) obtained via a direct solver. Clearly both the one-level and the 184

two-level preconditioner with POU coarse space are not robust. The POU coarse 185

space seems to have hardly any influence at all (520 versus 619 iterations), whereas 186

the new DtN coarse space leads to a robust convergence and a significantly reduced 187

number of iterations of 64. 188

Finally, in Table 1 we compare the different preconditioners and show that the 189

criterion for the number m j of eigenmodes that we select in each subdomain is in 190

some sense optimal. Adding one more functions has hardly any impact on the perfor- 191

mance while removing one has a strong negative impact. See [2] for more extensive 192

numerical experiments. 193
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Fig. 1. Partition into 16 subdomains

IsoValue
-99998.9
50001
150001
250001
350001
450001
550001
650001
750001
850001
950000
1.05e+06
1.15e+06
1.25e+06
1.35e+06
1.45e+06
1.55e+06
1.65e+06
1.75e+06
2e+06

Fig. 2. Example 1 (maxx,y
α(x)
α(y) = 2 ·106)

IsoValue
-4.86701
-3.74453
-2.9962
-2.24787
-1.49955
-0.751221
-0.00289558
0.74543
1.49376
2.24208
2.99041
3.73873
4.48706
5.23539
5.98371
6.73204
7.48036
8.22869
8.97702
10.8478

Fig. 3. Example 2 (maxx,y
α(x)
α(y) = 7 ·106)
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Fig. 4. Convergence history (Example 1)
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t1.1Coarse space size dimVH # PCG Iterations (tol= 10−7)
t1.2NONE POU D2N- D2N D2N+ NONE POU D2N- D2N D2N+
t1.3Example 1 0 16 32 46 62 619 520 446 64 37
t1.4Example 2 0 16 82 98 114 89 92 50 38 36

Table 1. Comparison of DtN coarse space against simple POU coarse space and no coarse
space, as well as demonstration of “optimality” of automatic criterion for choosing {m j}.
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