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Summary. We review our results related to the development of theoretically supported scal- 10

able algorithms for the solution of large scale contact problems of elasticity. The algorithms 11

combine the Total FETI/BETI based domain decomposition method adapted to the solution of 12

2D and 3D multibody contact problems of elasticity, both frictionless and with friction, with 13

our in a sense optimal algorithms for the solution of resulting quadratic programming and 14

QPQC problems. Rather surprisingly, the theoretical results are qualitatively the same as the 15

classical results on scalability of FETI/BETI for linear elliptic problems. The efficiency of the 16

method is demonstrated by results of parallel numerical experiments for contact problems of 17

linear elasticity discretized by more than 11 million variables in 3D and 40 million variables 18

in 2D. 19

1 Introduction 20

Contact problems are in the heart of mechanical engineering. Solving large multi- 21

body contact problems of linear elastostatics is complicated by the inequality bound- 22

ary conditions, which make them strongly non-linear, and, if the system of bodies 23

includes “floating” bodies, by the positive semi-definite stiffness matrices resulting 24

from the discretization of such bodies. Observing that the classical Dirichlet and 25

Neumann boundary conditions are known only after the solution has been found, it 26

is natural to assume the solution of contact problems to be more costly than the so- 27

lution of a related linear problem with the classical boundary conditions. Since the 28

cost of the solution of any problem increases at least linearly with the number of the 29

unknowns, it follows that the development of a scalable algorithm for contact prob- 30

lems is a challenging task which requires to identify the contact interface in a sense 31

for free. 32

The first promising results, at least for the frictionless problems, were obtained 33

by the researchers who tried to modify the methods that were known to be scalable 34
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for linear problems, in particular multigrid and domain decomposition. Experimental 35

evidence of scalability was achieved with the monotonic multigrid (see [11] and the 36

references therein). In spite of these nice results, the necessity to keep the coarse 37

grid away from the contact interface prevented the authors to prove the optimality 38

results similar to the classical results for linear problems. However, such result was 39

obtained by Schöberl who has developed an approximate variant of the projection 40

method using a domain decomposition preconditioner and a linear multigrid solver 41

on the interior nodes. An experimental evidence of scalability for the frictionless 42

problems was presented by Avery and Farhat [1]. The point of this paper is to report 43

our optimality results for contact problems of linear elasticity, both frictionless and 44

with friction. 45

The results are based on a combination of several ingredients. The first one is the 46

application of the TFETI (Total FETI) [8] or TBETI (Total BETI) [14] methods, vari- 47

ants of the duality based domain decomposition methods introduced by Farhat and 48

Roux [9] (finite elements) and Langer and Steinbach [13] (boundary elements). Since 49

the TFETI/TBETI methods treat all the subdomains as “floating”, the kernels of the 50

stiffness matrices of the subdomains are a priori known. This makes the method very 51

flexible and simplifies implementation of the multiplication of a vector by a gener- 52

alized inverse of the stiffness matrix. As any duality based method, TFETI/TBETI 53

reduces general inequality constraints to special separable ones. 54

The second ingredient is the “natural coarse grid preconditioning” introduced for 55

linear problems by Farhat, Mandel, and Roux [10] and Langer and Steinbach [13]. 56

This preconditioned cost function has the spectrum of the Hessian confined to a pos- 57

itive interval independent of the discretization parameter h and the decomposition 58

parameter H provided the ratio H/h is uniformly bounded. Since our precondition- 59

ing uses a projector to the subspace with the solution, it follows that its application 60

to the solution of variational inequalities does not turn the separable constraints into 61

general constraints and can be interpreted as a variant of the multigrid method with 62

the coarse grid on the interface. This unique feature, as compared with the standard 63

multigrid preconditioning for the primal problem, reduces the development of scal- 64

able algorithms for the solution of variational inequalities to the solution of bound 65

and equality constrained quadratic programming or QPQC (quadratic programming 66

with quadratic constraints) problems with the rate of convergence in terms of bounds 67

on the spectrum. 68

The resulting QP and QPQC problems, arising in the solution of the frictionless 69

contact problems and the problems with the Tresca friction (an auxiliary problem for 70

Coulomb friction), respectively, are solved by our algorithms with the rate of conver- 71

gence in terms of the bounds on the spectrum, the third ingredient of our development 72

(see [7]). Putting the three ingredients together with a few simple observations, we 73

get theoretically supported algorithms for contact problems. The theoretical results 74

are illustrated by the results of numerical experiments which show that both numeri- 75

cal and parallel scalability can be observed in practice. Finally we report the solutions 76

of some real world problems. More details can be found in Dostál et al. [3–5], and 77

Sadowská et al. [14]. 78
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2 Dual Formulation of Frictionless Contact Problems 79

To simplify our presentation, let us assume that the bodies are assembled from Ns 80

subdomains Ω (s) which are “glued” together by suitable equality constraints. After 81

the standard finite element discretization, the equilibrium of the system is described 82

as a solution u of the problem 83

minJ(v) subject to
Ns

∑
s=1

B(s)
N v(s) ≤ gN and

Ns

∑
s=1

B(s)
E v(s) = o, (1)

where o denotes the zero vector and J(v) is the energy functional defined by 84

J(v) =
Ns

∑
s=1

1
2

v(s)
T

K(s)v(s)− v(s)
T

f (s), 85

v(s) and f (s) denote the admissible subdomain displacements and the subdomain vec- 86

tor of prescribed forces, K(s) is the subdomain stiffness matrix, B(s)
N ∈ R

mC×n and 87

B(s)
E ∈ R

mE×n are the blocks of the matrix B =
[
BT

N ,B
T
E

]T
that correspond to Ω (s), 88

and gN is a vector collecting the normal gaps between the bodies in the reference 89

configuration. The matrix BN and the vector gN arise from the nodal or mortar de- 90

scription of the non-penetration conditions, while BE describes the “gluing” of the 91

subdomains into the bodies and the Dirichlet boundary conditions. Recall that if the 92

problem is discretized by the TBETI method, then we get the potential energy mini- 93

mization problem of the very same structure as (1), where all the objects correspond 94

only to the boundaries Γ (s) of Ω (s) except the term with the prescribed volume forces 95

(if there is some); see [14] for more details. By contrast with TFETI, when the ma- 96

trices K(s) are sparse, in the case of TBETI these are fully populated. 97

To simplify the presentation of basic ideas, we can describe the equilibrium in 98

terms of the global stiffness matrix K, the vector of global displacements u, and the 99

vector of global loads f . In the TFETI/TBETI methods, we have 100

K = diag(K(1), . . . ,K(Ns)), u =

⎡
⎢⎣

u(1)

...
u(Ns)

⎤
⎥⎦ , and f =

⎡
⎢⎣

f (1)

...
f (Ns)

⎤
⎥⎦ , 101

where K(s), s = 1, . . . ,Ns, is a positive semidefinite matrix. The energy function reads 102

j(v) =
1
2

vT Kv− f T v 103

and the vector of global displacements u solves 104

min j(v) s.t. BNv≤ gN and BEv = o. 105

Alternatively, the global equilibrium may be described by the Karush–Kuhn– 106

Tucker conditions (see, e.g., [6]) 107
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Ku = f −BT λ , λN ≥ o, λ T (Bu−g) = o, (2)

where g =
[
gT

N ,o
T
]T

and λ =
[
λ T

N ,λ T
E

]T
denotes the vector of Lagrange multipliers 108

which may be interpreted as the reaction forces. The problem (2) differs from the 109

linear problem by the non-negativity constraint on the components of reaction forces 110

λN and by the complementarity condition. 111

We can use the first equation of (2) to eliminate the displacements. We shall get 112

the problem to find 113

min Θ(λ ) s.t. λN ≥ o and RT ( f −BT λ ) = o, (3)

where 114

Θ(λ ) =
1
2

λ T BK+BT λ −λ T (BK+ f −g)+
1
2

f K+ f , (4)

K+ denotes a generalized inverse that satisfies KK+K = K, and R denotes the full 115

rank matrix whose columns span the kernel of K. The action of K+ can be eval- 116

uated at the cost comparable with that of Cholesky’s decomposition applied to the 117

regularized K (see [2]). Denoting F = ‖BK+BT‖, 118

F = F−1BK+BT , e = SRT f , G = SRT BT , d̃ = F−1(BK† f −g), 119

with S denoting a nonsingular matrix that defines the orthonormalization of the rows 120

of RT BT , we can modify (3) to 121

min θ̃(λ ) s.t. λN ≥ 0 and Gλ = e, (5)

where 122

θ̃ (λ ) =
1
2

λ T Fλ −λ T d̃. (6)

Our next step is to replace the equality constraint in (5) by a homogeneous one. 123

To this end, it is enough to find any λ̃ such that 124

Gλ̃ = e, 125

denote λ = μ + λ̃ , and substitute into (5). We get 126

θ̃ (λ ) =
1
2

μT Fμ− μT (d̃−Fλ̃ )+ const. 127

After returning to the old notation, problem (5) is reduced to 128

min
1
2

λ T Fλ −λ T d s.t. Gλ = o and λN ≥ �N (7)

with � = −λ̃ and d = d̃−Fλ̃ . Since G has orthonormal rows, we can use the least 129

square solution 130

λ̃ = GT e. (8)
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3 Dual Formulation of Contact Problems with Tresca Friction 131

If the Tresca friction is prescribed on the contact interface, then the equilibrium of 132

the system is described as a solution u of the problem 133

minJT (v) subject to
Ns

∑
s=1

B(s)
N v(s) ≤ gN and

Ns

∑
s=1

B(s)
E v(s) = o, (9)

where JT (v) is the energy functional defined by 134

JT (v) = J(v)+ j(v), j(v) =
mC

∑
i=1

Ψi‖Tiu‖, 135

Ψi denotes an a priori defined slip bound at node i, and Tiu denotes the jump of the 136

tangential displacement due to the displacement u. Using the standard procedure to 137

modify the non-differentiable term j (see [3, 5]), we get 138

j(v) =
mC

∑
i=1

Ψi‖Tiu‖=
mC

∑
i=1

max
‖τi‖≤Ψi

τT
i Tiu, 139

where τi can be considered as Lagrange multipliers. We assume that BN , BE , and T 140

are full rank matrices. 141

Let d denote the spatial dimension and let us introduce the Lagrangian with 142

three types of Lagrange multipliers, namely λN ∈ R
mC associated with the non- 143

interpenetration condition, λE ∈ R
mE associated with the “gluing” and prescribed 144

displacements, and 145

τ = [τT
1 ,τ

T
2 , . . . ,τ

T
mC

]T ∈R
(d−1)mC 146

which regularizes the non-differentiability. The Lagrangian associated with problem 147

(1) reads 148

L(u,λN ,λE ,τ) = J(u)+ τT Tu+λ T
N (BNu− cN)+λ T

E (BEu− cE). (10)

Using the convexity of the cost function and constraints, we can use the classical 149

duality theory [6] to reformulate problem (9) to get 150

min
u

sup
λE∈RmE , λN≥o
‖τi‖≤Ψi , i=1,...,mC

L(u,λN ,λE ,τ) = max
λE∈RmE , λN≥o
‖τi‖≤Ψi , i=1,...,mC

min
u

L(u,λN ,λE ,τ). 151

To simplify the notation, we denote 152

λ =

⎡
⎣ λE

λN

τ

⎤
⎦ , B =

⎡
⎣BE

BN

T

⎤
⎦ , c =

⎡
⎣ cE

cN

o

⎤
⎦ , 153

and 154
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Λ(Ψ ) =
{
(λ T

E ,λ T
N ,τT )T ∈R

mE+dmC : λN ≥ o,‖τi‖ ≤Ψi, i = 1, . . . ,mC
}
, 155

so that we can write the Lagrangian briefly as 156

L(u,λ ) =
1
2

uT Ku− f T u+λ T (Bu− c) 157

and problem (9) is equivalent to the saddle point problem 158

L(û, λ̂ ) = max
λ∈Λ(Ψ )

min
u

L(u,λ ). (11)

Similarly to the frictionless case, we eliminate the primal variables from (11) and 159

carry out the homogenization to reduce the minimization problem to 160

min
1
2

λ T Fλ −λ T d s.t. Gλ = o and λ ∈Λ(Ψ ) (12)

with the notation of Sect. 2. Notice that we minimize exactly the same type of the cost 161

function as in the frictionless case, but with some additional quadratic constraints. 162

4 Preconditioning by Projector 163

Our final step is based on the observation that both the frictionless contact problem 164

and the contact problem with Tresca friction are equivalent to 165

minθ (λ ) s.t. λ ∈Ω , (13)

where 166

θ (λ ) =
1
2

λ T (PFP+ρQ)λ −λ T P d, Q = GT (GGT )−1G, P = I−Q, 167

ρ > 0, and Ω = {λ : Gλ = o and λN ≥ o} (without friction) or Ω = {λ : Gλ =o 168

and λ ∈ Λ(Ψ )} (Tresca). A good choice of the regularization parameter is given 169

by 170

ρ = ‖PFP‖, 171

as this is the largest value for which 172

‖PFP‖ ≥ ‖PFP+ρQ‖. 173

Problem (13) turns out to be a suitable starting point for development of an ef- 174

ficient algorithm for variational inequalities due to the following classical estimates 175

[10] of the extreme eigenvalues. 176

Theorem 1. If the decompositions and the discretizations of given contact problems 177

are sufficiently regular, then there are constants C1 > 0 and C2 > 0 independent of 178

the discretization parameter h and the decomposition parameter H such that 179

C1
h
H
≤ λmin(PFP|ImP) and λmax(PFP|ImP) = ‖PFP‖ ≤ C2, (14)

where λmin and λmax denote the extremal eigenvalues of the corresponding matrices. 180
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5 Optimality 181

Theorem 1 states that if we fix the regularization parameter ρ and keep H/h uni- 182

formly bounded, then problem (13) resulting from the application of various dis- 183

cretizations and decompositions has the spectrum of the Hessian matrices confined 184

to a positive interval. It follows that to develop a scalable algorithm for the contact 185

problems, it is enough to find an algorithm that is able to find an approximate so- 186

lution of (13) in a number of matrix–vector multiplications uniformly bounded in 187

terms of bounds on the spectrum of the cost function. 188

Here we propose to use SMALSE (semi-monotonic augmented Lagrangian 189

method for separable and equality constraints), our variant of the augmented La- 190

grangian method [7]. SMALSE enforces the equality constraints by the Lagrange 191

multipliers generated in the outer loop, while the auxiliary QPQC problems with sep- 192

arable constraints are solved approximately in the inner loop by the MPGP algorithm 193

proposed by Dostál and Kozubek [7]. MPGP is an active set based algorithm which 194

uses the conjugate gradient method to explore the current face, the fixed steplength 195

gradient projection to change the active set, and the adaptive precision control for 196

the solution of auxiliary linear problems. The unique feature of SMALSE with the 197

inner loop implemented by MPGP when used to (13) is the bound on the number of 198

iterations whose cost is proportional to the number of variables, so that it can return 199

an approximate solution for the cost proportional to the number of variables. It fol- 200

lows that SMALSE/MPGP is a scalable algorithm for the solution of (13) provided 201

the cost of decomposition of K and application of the projectors P and Q is not too 202

large. 203

Theorem 2. If the decompositions and the discretizations of a given contact prob- 204

lem are sufficiently regular, then there is a constant C > 0 independent of the dis- 205

cretization parameter h and the decomposition parameter H such that the algorithm 206

SMALSE/MPGP (or SMALBE/MPRGP for the frictionless problems) with fixed pa- 207

rameters specified in [7] can find the solution of (13) in a number of iterations 208

bounded by C provided the initial approximation satisfies 209

‖λ 0‖ ≤ c‖Pd‖, 210

where c > 0 is an a priori chosen constant. 211

6 Numerical Experiments 212

The algorithms reported in this paper were implemented into our MatSol software 213

[12] and tested with the aim to verify their optimality and capability to solve the real 214

world problems. 215

6.1 Scalability of TFETI: 2D Cantilever Beams with Tresca Friction 216

We first tested the scalability on a 2D problem of Fig. 1 with varying discretiza- 217

tions and decompositions using structured grids. We kept the ratio H/h of the 218
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decomposition and the discretization parameters approximately constant so that the 219

assumptions of Theorem 1 were satisfied. 220

The results of computations carried out to the relative precision 10−4 are in 221

Table 1. We can observe that the number of matrix–vector multiplications varies only 222

mildly with the increasing dimension of the problem in agreement with the theory. 223

We conclude that the scalability can be observed in practice.

Fig. 1. Geometry of 2D cantilever
beams

Fig. 2. Geometry of 3D cantilever beamsth
is

fig
ur

e
w

ill
be

pr
in

te
d

in
b/

w

224

Table 1. Numerical scalability of TFETI: 2D cantilever beams.

Number of subdomains 1936 4096 7744
Number of CPUs 48 48 48
Primal variables 10,071,072 21,307,392 40,284,288
Dual variables 384,473 817,793 1,551,089
Null space dimension 5808 12,288 23,232
SMALSE-M iterations 8 8 8
Hessian multiplications 119 134 180
Solution time [s] 839 1665 7825

6.2 Scalability of TFETI/TBETI: 3D Cantilever Beams with Tresca Friction 225

The second problem was a 3D alternative to the previous example (see Fig. 2). The 226

results of computations carried out for both TFETI and TBETI methods are in Ta- 227

bles 2 and 3, respectively. We can see that the number of matrix–vector multiplica- 228

tions again varies only mildly with the increasing problem size as predicted by the 229

theory. 230
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Table 2. Numerical scalability of TFETI: 3D cantilever beams.

Number of subdomains 108 500 1372 2916
Number of CPUs 48 48 48 48
Primal variables 431,244 1,996,500 5,478,396 11,643,588
Dual variables 88,601 444,927 1,261,493 2,728,955
Null space dimension 648 3000 8232 17,496
SMALSE-M iterations 3 4 4 4
Hessian multiplications 78 97 93 119
Solution time [s] 60 374 1663 7745

Table 3. Numerical scalability of TBETI: 3D cantilever beams.

Number of subdomains 108 500 1372 2916
Number of CPUs 48 48 48 48
Primal variables 195,045 903,000 2,477,830 5,266,300
Dual variables 88,601 444,927 1,261,493 2,728,955
Null space dimension 648 3000 8232 17,496
SMALSE-M iterations 7 8 9 9
Hessian multiplications 160 161 160 260
Solution time [s] 46 301 2211 7949

6.3 Applications of TFETI/TBETI to Real World Problems 231

We have also tested our algorithms on real world problems. First we consider the 232

analysis of the stress in the roller bearings of Fig. 3. The problem is difficult because 233

it consists of 73 bodies in mutual contact and only one is fixed in space. The solution 234

of the problem discretized by 2,730,000/459,800 primal/dual variables and decom- 235

posed into 700 subdomains required 4,270 matrix–vector multiplications. The von 236

Mises stress distribution is in Fig. 3. 237

Second we consider the analysis of the yielding clamp connection of steel arched 238

supports depicted in Fig. 4. This type of construction is used to support the min- 239

ing openings. It is a typical multibody contact, where the yielding connection plays 240

the role of the mechanical protection against destruction, i.e., against the total de- 241

formation of the supporting arches. We consider contact with the Coulomb friction, 242

where the coefficient of friction was F = 0.5. The problem was decomposed into 243

250 subdomains using METIS and discretized by 1,592,853 and 216,604 primal and 244

dual variables, respectively. The total displacements for both TFETI and TBETI are 245

depicted in Fig. 4. The solution required 1,922 matrix-vector multiplications. 246

7 Comments and Conclusions 247

The TFETI method turns out to be a powerful engine for the solution of contact prob- 248

lems of elasticity. The results of numerical experiments comply with the theoretical 249

results and indicate high efficiency of the method reported here. Future research will 250

include adaptation of the standard preconditioning strategies. 251
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Fig. 3. Frictionless roller bearing of wind generator
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Fig. 4. Steel support with Coulomb friction
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decomposition with fixing nodes to stable computation of a generalized inverse 262

of the stiffness matrix of a floating structure. Accepted, 2011. 263

[3] Z. Dostál, T. Kozubek, P. Horyl, T. Brzobohatý, and A. Markopoulos. A scal- 264

able TFETI algorithm for two-dimensional multibody contact problems with 265

friction. J. Comput. Appl. Math., 235(2):403–418, 2010. ISSN 0377-0427. doi: 266

10.1016/j.cam.2010.05.042. URL http://dx.doi.org/10.1016/j.cam. 267

2010.05.042. 268

[4] Z. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, and A. Markopoulos. Scal- 269

able TFETI algorithm for the solution of multibody contact problems of elas- 270

ticity. Internat. J. Numer. Methods Engrg., 82(11):1384–1405, 2010. ISSN 271

0029-5981. 272

http://dx.doi.org/10.1016/j.cma.2008.12.014
http://dx.doi.org/10.1016/j.cma.2008.12.014
http://dx.doi.org/10.1016/j.cam.2010.05.042
http://dx.doi.org/10.1016/j.cam.2010.05.042


Page 49

UN
CO

RR
EC

TE
D

PR
O
O
F

Scalable Domain Decomposition Algorithms for Contact Problems

[5] Z. Dostál, T. Kozubek, A. Markopoulos, T. Brzobohatý, V. Vondrák, and 273

P. Horyl. A theoretically supported scalable tfeti algorithm for the solution 274

of multibody 3d contact problems with friction. In Press, 2011. 275
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