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Summary. Domain decomposition methods are used to find the numerical solution of large 9

boundary value problems in parallel. In optimized domain decomposition methods, one solves 10

a Robin subproblem on each subdomain, where the Robin parameter a must be tuned (or opti- 11

mized) for good performance. We show that the 2-Lagrange multiplier method can be analyzed 12

using matrix analytical techniques and we produce sharp condition number estimates. 13

1 Introduction 14

Consider the model problem 15

−Δu = f in Ω and u = 0 on ∂Ω , (1)

where Ω is the domain, f is a given forcing and u ∈H1
0 (Ω) is the unknown solution. 16

In the present paper, we describe a symmetric 2-Lagrange multiplier (S2LM) domain 17

decomposition method to solve elliptic problems such as (1). When we discretize (1) 18

using e.g. piecewise linear finite elements, we obtain a linear system of the form 19

Au = f, (2)

where u ∈ R
n is the finite element coefficient vector of the approximation to the 20

solution u of (1). 21

We now consider the domain decomposition [9] Ω = Γ ∪Ω1 ∪ . . .∪Ωp, where 22

Ω1, . . . ,Ωp are the (open, disjoint) “subdomains” and Γ = Ω ∩⋃p
k=1 ∂Ωk is the “ar- 23

tificial interface”. We introduce the “local problems” 24

⎧⎪⎨
⎪⎩
−Δuk = f in Ωk, (PDE)

uk = 0 on ∂Ωk ∩∂Ω , (natural b.c.)

(a+Dν)uk = λk on ∂Ωk ∩Γ , (artificial b.c.)

(3)

where a > 0 is the Robin tuning parameter and k = 1, . . . , p and Dν denotes the 25

directional derivative in the outwards pointing normal ν of ∂Ωk. The interface Γ is 26
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artificial in that it is not a natural part of the “physical problem” (1) but instead is 27

introduced purely for the purpose of calculation. 28

We again discretize the systems (3) using a finite element method. The Robin b.c. 29

in (3) gives rise to a mass matrix on the interface Γ ∩ ∂Ωk , which we lump. If the 30

grid is uniform, this mass matrix is aI (we absorb any h factors into the a coefficient) 31

– we make this simplification for the remainder of the present paper. 32

[
AIIk AIΓ k

AΓ Ik AΓ Γ k + aI

] uk︷ ︸︸ ︷[
uIk

uΓ k

]
=

fk︷ ︸︸ ︷[
fIk

fΓ k

]
+

[
0

λλ k

]
. (4)

Here, we have used the suggestive subscripts I for interior nodes and Γ for the arti- 33

ficial interface nodes. 34

The FETI-2LM algorithm was introduced in [4] for cases without cross-points, 35

while the general case including cross points was introduced and analyzed in [7]. 36

The method consists of finding the value of λλ = [λλ T
1 , . . . ,λλ

T
p ]

T which yields solutions 37

u1, . . . ,up to (4) in such a way that u1, . . . ,up meet continuously across Γ and glue 38

together into the unique solution u of (2). 39

The main result of the present paper is a new estimate of the condition number 40

of FETI-2LM algorithms using matrix analytical techniques. This new idea produces 41

sharp condition number estimates with much more straightforward proof techniques 42

than the techniques used in [7] (where the estimates are not sharp). As a result, the 43

present paper is a logical follow-up to [7]. 44

The present paper focuses on 1-level algorithms which are known not to scale. 45

Scalable algorithms are considered in [8] and [3]. 46

Our paper is organized as follows. In Sect. 2, we give the symmetric 2-Lagrange 47

multiplier method for general domains with cross points. In Sect. 3, we give spectral 48

estimates including our main result, Theorem 1, on the condition number of the sym- 49

metric 2-Lagrange multiplier system. In Sect. 4, we verify this Theorem with some 50

numerical experiments. 51

2 The Symmetric 2-Lagrange Multiplier Method 52

We now describe the 2-Lagrange multiplier method that we analyze in the present 53

paper. Consider the local problems (4) and eliminate the interior degrees of freedom 54

to obtain the relation 55

a

uG︷ ︸︸ ︷⎡
⎢⎣

uΓ 1
...

uΓ p

⎤
⎥⎦=

Q︷ ︸︸ ︷⎡
⎢⎣

a(S1 + aI)−1

. . .
a(Sp + aI)−1

⎤
⎥⎦
⎛
⎜⎝

g︷ ︸︸ ︷⎡
⎢⎣

g1
...

gp

⎤
⎥⎦+

λλ︷ ︸︸ ︷⎡
⎢⎣

λλ 1
...

λλ p

⎤
⎥⎦
⎞
⎟⎠ , (5)

where 56

Sk = AΓ Γ k−AΓ IkA−1
IIkAIΓ k and gk = fΓ k−AΓ IkA−1

IIk fIk 57
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are the “Dirichlet-to-Neumann maps” and “accumulated right-hand-sides” and where 58

uΓ j denotes those degrees of freedom of the local solution u j associated with the ar- 59

tificial interface Γ . 60

The matrices Sk are symmetric and semidefinite. Since Q = a(S+aI)−1, we find 61

that the spectrum σ(Q) is contained in the set [ε,1− ε]∪{1} for some ε > 0. The 62

eigenvalue 1 of Q comes from the kernel of S and hence the kernel of Q− I is spanned 63

by the indicating functions of the subdomains that “float”. 64

2.1 Relations Between (4) and (2) and Continuity 65

We define the boolean restriction matrix Rk by selecting rows of the n× n identity 66

matrix corresponding to those vertices of Ω that are in Ω̄k ∩Ω . As a result, from 67

a finite element coefficient vector v corresponding to a finite element function v ∈ 68

H1
0 (Ω), we can define a finite element coefficient vector vk =Rkv, which corresponds 69

to a finite element function v ∈ H1(Ωk)∩H1
0 (Ω), which is obtained by restricting v 70

to Ωk. 71

The identity
∫

Ω = ∑p
k=1

∫
Ωk

induces the following relations between (4) and (2): 72

A =
p

∑
k=1

RT
k

ANk︷ ︸︸ ︷[
AIIk AIΓ k

AΓ Ik AΓ Γ k

]
Rk and f =

p

∑
k=1

RT
k fk. (6)

Each interface vertex xi ∈ Γ is adjacent to mi ≥ 2 subdomains. As a result, the 73

“many-sided trace” uG defined by (5) contains mi entries corresponding to xi, one per 74

subdomain adjacent to xi. We define the orthogonal projection matrix K which aver- 75

ages function values for each interface vertex xi. A many-sided trace uG corresponds 76

to local functions u1, . . . ,up that meet continuously across Γ if and only if 77

KuG = uG. (7)

2.2 A Problem in λλ 78

The symmetric 2-Lagrange multiplier (S2LM) system is given by 79

(Q−K)λλ =−Qg. (8)

We further let E be the orthogonal projection onto the kernel of Q− I. 80

Lemma 1. Assume that ‖EK‖< 1. The problem (2) is equivalent to (8). 81

Proof. In order to solve (2) using local problems (4), one should find Robin bound- 82

ary values λλ 1, . . . ,λλ p which result in local solutions u1, . . . ,up that meet continu- 83

ously across Γ . As a result, we impose the condition (7), which we multiply by 84

a > 0 and convert to an expression in λλ using (5) to obtain Ka(S+ aI)−1(λλ + g) = 85

a(S+ aI)−1(λλ + g) or 86
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(I−K)Qλλ = (K− I)Qg (9)

With this continuity condition, there is clearly a unique u which restricts to the u j: 87

u j = R ju, j = 1, . . . , p. (10)

Imposing continuity is not sufficient, we must also ensure that the “fluxes” match. 88

Indeed, if we impose on the solution u of (10) that the Eq. (2) should hold, one 89

obtains 90

f = Au
(6)
=

p

∑
j=1

RT
j AN jR ju

(10)
=

p

∑
j=1

RT
j AN ju j (11)

(4),(6)
= f+

p

∑
j=1

RT
j

(
0

λλ j−auΓ j

)
(12)

Canceling the f terms on each side and multiplying by K, we obtain Kλλ −KauG = 0. 91

Using (5), we obtain 92

K(Q− I)λλ =−KQg. (13)

We add (9) and (13) to obtain (8). 93

To see that the solution of (8) is unique, observe that the ranges of E and K
intersect trivially by the hypothesis that ‖EK‖< 1. As a result, the eigenspace of Q
of eigenvalue 1 intersects trivially with the range of K and Q−K is nonsingular. ��

We will further discuss the choice of the parameter a in Sect. 3.1. 94

3 Spectral Estimates 95

If we use GMRES or MINRES on the symmetric indefinite system (8), the residual 96

norm can be estimated as a function of the condition number of Q−K, cf. [2]. In 97

order to estimate the condition number of Q−K, we begin by giving a canonical 98

form for the pair of projections E and K. 99

Lemma 2. Let E and K be orthogonal projections. There is a choice of orthonormal 100

basis that block diagonalizes E and K simultaneously and such that the blocks Ek 101

and Kk of E and K satisfy 102

Ek ∈
{

0,1,

[
1 0
0 0

]}
and Kk ∈

{
0,1,

[
c2

k cksk

cksk s2
k

]}
, (14)

where ck = cosθk > 0, sk = sinθk > 0 and θk ∈ (0,π/2) is a “principal angle” 103

relating E and K. 104

The canonical form (14) can be obtained from the CS decomposition [1] by start- 105

ing from E = diag(I,0) and picking orthonormal bases for the range and kernel of 106

K. Due to space constraints, we omit this argument. 107

We also give a technical lemma which describes the spectrum of a sum of certain 108

symmetric matrices. 109
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Lemma 3. Let X, Y be symmetric matrices of dimensions m×m. Let 0< ymin < ymax 110

and assume that |σ(Y )| ⊂ [ymin,ymax]. Denote by ρ(X) the spectral radius of X and 111

assume that ρ(X)< ymin. Then, 112

|σ(X +Y)| ⊂ [ymin−ρ(X),ymax +ρ(X)]. (15)

Proof. This follows from a Theorem of Weyl [5, Theorem 4.3.1, pp. 181–182]. ��

3.1 Condition Number of Q−K 113

We now come to our main result. 114

Theorem 1. Let ε > 0. Assume that σ(Q)⊂ [ε,1− ε]∪{1}. Let E,K be orthogonal 115

projections and assume that ‖EK‖< 1. Then we have the sharp estimates 116

|σ(Q−K)| ⊂
[

ε +
√
(1+ ε)2 −4‖EK‖2ε−1

2
,1

]
, and (16)

κ(Q−K)≤ 2

ε +
√
(1+ ε)2 −4‖EK‖2ε−1

= O((1−‖EK‖)−1ε−1). (17)

Proof. Let X = Q− 1
2 I−εE and Y = 1

2 I+εE−K. Then, Q−K = X +Y and we are 117

in a position to use Lemma 3. We now estimate the spectral properties of X and Y . 118

Spectral properties of X: Recall that E projects onto the eigenspace of Q with 119

eigenvalue 1. As a result, after some orthonormal change of basis, we find that Q = 120

diag(Q0, I) and E = diag(0, I) and hence 121

ρ(X)≤ 1
2
− ε. (18)

Spectral properties of Y : Lemma 2 shows that E and K block diagonalize si- 122

multaneously and Y is also block diagonal in the same basis. Using (14), we find that 123

the kth block Yk of Y is given by 124

Yk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 if Ek = Kk = 0,

− 1
2 if Ek = 0, Kk = 1,

1
2 + ε if Ek = 1, Kk = 0,[

1
2 + ε− c2

k −cksk

−cksk
1
2 − s2

k

]
otherwise;

(19)

where the case Ek =Kk = 1 is excluded by the hypothesis that ‖EK‖< 1. As a result, 125

the eigenvalues of Yk are in the set {± 1
2 ,

1
2 + ε,λ±(c2

k)}, where 126

λ±(c2
k) =

ε±
√
(1+ ε)2−4c2

kε

2
. (20)
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Fig. 1. Comparing random Q−K (points) versus the estimate (17) (solid). Left: ε = 0.1,
varying ‖EK‖, 3,000 repetitions. Right: ‖EK‖ = 0.99, varying ε , 3,000 repetitions

Note that ‖EK‖=√
ρ(EKE)=maxk ck and that the functions λ±(c2

k) are mono- 127

tonic in c2
k . Hence, we find the following bounds for the modulus of an eigenvalue of 128

Y : 129

|σ(Y )| ⊂
[ ymin︷ ︸︸ ︷√

(1+ ε)2−4‖EK‖2ε− ε
2

,

ymax︷ ︸︸ ︷
1
2
+ ε

]
. (21)

Combining (15), (18), and (21) gives (16). 130

The examples Q = diag(1,1− ε) and K =

[
c2 c

√
1− c2

c
√

1− c2 1− c2

]
for c = 0 and

c = ‖EK‖ give the extreme eigenvalues of (21) and hence our estimates are sharp.
��

In view of Theorem 1, the Robin parameter a should be chosen so as to make 131

ε as large as possible. This occurs precisely when a is the geometric mean of the 132

extremal positive eigenvalues of S. More details can be found in [7]. 133

4 Numerical Verification 134

We verify numerically the validity of Theorem 1 by generating random 5×5 matrices 135

Q and E as follows. We set Q = diag(ε,q,1− ε,1,1) where q is chosen randomly 136

between ε and 1−ε . We generate randomly a 2-dimensional space and set K to be the 137

orthogonal projection onto that space. We compare the resulting condition number 138

κ = κ(Q−K) against (17), cf. Fig. 1. 139

We observe that our estimates are correct and sharp for such “generic” random 140

matrices, although some “lucky” random matrices produce much milder condition 141

numbers than our estimates. 142
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5 Conclusions 143

We have analyzed a domain decomposition method with optimized Robin boundary 144

conditions. Our estimates rely on new matrix analytical techniques and are sharp. By 145

further estimating the quantities ‖EK‖ and ε (cf. [7]) our estimates are consistent 146

with and generalize the estimates calculated using Fourier transforms in the opti- 147

mized Schwarz literature (e.g. [6]). An upcoming paper [8] will further analyze the 148

weak scaling property of a 2-level algorithm and large-scale implementations are 149

being developed. There are also several remaining open problems, such as the anal- 150

ysis of FETI-2LM for nonsymmetric and/or nonlinear problems and the analysis of 151

substructuring preconditioners. 152
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