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1 Introduction 9

The convergence rate of a Krylov method such as the Generalized Conjugate Resid- 10

ual (GCR) [6] method, to solve a linear system Au = f , A = (ai j) ∈ R
m×m,u ∈ 11

R
m, f ∈ R

m, decreases with increasing condition number κ2(A) = ||A||2||A−1||2 12

of the non singular matrix A. Left preconditioning techniques consist of solving 13

M−1Au=M−1 f such that κ2(M−1A)<<κ2(A). The Additive Schwarz (AS) precon- 14

ditioning is built from the adjacency graph G =(W,E) of A, where W = {1,2, . . . ,m} 15

and E = {(i, j) : ai j �= 0} are the edges and vertices of G. Starting with a non- 16

overlapping partition W =∪p
i=1Wi,0 and δ ≥ 0 given, the overlapping partition {Wi,δ} 17

is obtained defining p partitions Wi,δ ⊃Wi,δ−1 by including all the immediate neigh- 18

boring vertices of the vertices in the partition Wi,δ−1. Then the restriction opera- 19

tor Ri,δ from W to Wi,δ defines the local operator Ai,δ = Ri,δ ART
i,δ ,Ai,δ ∈ R

mi,δ×mi,δ 20

on Wi,δ . The AS preconditioning writes: M−1
AS,δ =

p

∑
i=1

RT
i,δ A−1

i,δ Ri,δ . Introducing R̃i,δ 21

the restriction matrix on a non-overlapping subdomain Wi,0, the Restricted Additive 22

Schwarz (RAS) iterative process [2] writes: 23

uk = uk−1 +M−1
RAS,δ

(
f −Auk−1

)
, withM−1

RAS,δ =
p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ (1)

The RAS exhibits a faster convergence than the AS, as shown in [5], leading to a 24

better preconditioning that depends of the number of subdomains. When it is applied 25

to linear problems, the RAS has a pure linear rate of convergence/divergence that can 26

be enhanced with optimized boundary conditions giving the ORAS method of [11]. 27

The RAS method’s linear convergence allows its acceleration of the convergence by 28

the Aitken’s process as done in [8] for the Schwarz method. 29

In [4] the present authors designed the ARAS2 preconditioning technique based 30

on the Aitken’s acceleration of the convergence technique. This paper presents an 31

approach to solve linear systems coming from CFD industrial cases. The choice of an 32
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approximation space based on the Singular Value Decomposition of the interface’s 33

solutions of the RAS iterative process presented in [14] is done. This provides a 34

preconditioning technique that depends on the Right Hand Side but with a very low 35

computational time and totally algebraic. 36

2 The ARAS2 Preconditioning Method 37

In what follows, we write the Aitken Restricted Additive Schwarz (ARAS) iterative 38

process and the associated preconditioner. This preconditioner belongs to the fam- 39

ily of the two-level preconditioner techniques (see [10, 13] and references) but the 40

coarse grid operator uses only parts of the artificial interfaces contrary to the patch 41

substructuring method of [7]. In this way, it can be seen as similar as the SchurRAS 42

method of [9] but it differs because the discrete Steklov-Poincaré operator connects 43

the coarse artificial interfaces of all the subdomains. 44

2.1 The ARAS and ARAS2 Preconditioner’s Formulation 45

Let Γi =Wi,δ+1 \Wi,δ be the interface associated to Wi,δ and Γ =∪p
i=1Γi be the global 46

interface. Then u|Γ ∈ R
n is the restriction of the solution u ∈ R

m on the Γ interface 47

and ek
|Γ = uk

|Γ − u∞
|Γ is the error of (1) at the interface Γ . Taking into account that 48

there exists a matrix P ∈ R
n×n independent of the iterate k such that ek

|Γ = Pek−1
|Γ , 49

we can apply the Aitken’s acceleration of the convergence process [8] (if ||P||< 1 to 50

ensure existence of (In−P)−1 for example) as follows: 51

u∞
|Γ = (In−P)−1

(
uk
|Γ −Puk−1

|Γ
)
. (2)

P can be computed analytically or numerically for a separable operator on separable 52

geometry [8] or numerically approximated in other cases [14]. Using this property 53

on the RAS method, we would like to write a preconditioner which includes the 54

Aitken’s acceleration process. We introduce a restriction operator RΓ ∈ R
n×m from 55

W to the global artificial interface Γ , with RΓ RT
Γ = In. 56

The Aitken Restricted Additive Schwarz (ARAS) must generate a sequence of 57

solutions on the interface Γ , and accelerate the convergence of the Schwarz process 58

from this original sequence. Then the accelerated solution on the interface replaces 59

the last one. This could be written combining an AS or RAS process Eq. (3a) with 60

the Aitken process written in R
m×m Eq. (3b) and substracting the Schwarz solution 61

which is not extrapolated on Γ Eq. (3c). We can write the following approximation 62

u∗ of the solution u: 63

u∗ = uk−1 +M−1
RAS,δ( f −Auk−1) (3a)

+RT
Γ (In−P)−1

(
uk
|Γ −Puk−1

|Γ
)

(3b)

−RT
Γ InRΓ

(
uk−1 +M−1

RAS,δ ( f −Auk−1)
)

(3c)
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We would like to write u∗ as an iterated solution derived from an iterative process 64

of the form u∗ = uk−1 + M−1
ARAS,δ

(
f −Auk−1

)
, where M−1

ARAS,δ is the Aitken-RAS 65

preconditioner. 66

Hence the formulation Eq. (3) leads to an expression of an iterated solution u∗: 67

u∗ = uk−1 +
(

Im +RT
Γ

(
(In−P)−1− In

)
RΓ

)
M−1

RAS,δ

(
f −Auk−1

)

This iterated solution u∗ can be seen as an accelerated solution of the RAS it- 68

erative process. Drawing our inspiration from the Stephensen’s method, we build a 69

new sequence of iterates from the solutions accelerated by the Aitken’s acceleration 70

method. Such a process is done in [12]. Then, one considers u∗ as a new uk and writes 71

the following ARAS iterative process: 72

uk = uk−1 +
(

Im +RT
Γ

(
(In−P)−1− In

)
RΓ

)
M−1

RAS,δ

(
f −Auk−1

)
(4)

Then we defined the ARAS preconditioner as 73

M−1
ARAS,δ =

(
Im +RT

Γ

(
(In−P)−1− In

)
RΓ

) p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ (5)

If P is known exactly, the ARAS process written in Eq. (4) needs two steps to 74

converge to the solution u with an initial guess u0 = 0. Then we have: 75

Proposition 1. If P is known exactly then we have 76

A−1 =
(

2M−1
ARAS,δ −M−1

ARAS,δ AM−1
ARAS,δ

)
that leads

(
I−M−1

ARAS,δ A
)

to be a nilpo- 77

tent matrix of degree 2. 78

The previous proposition leads to an approximation of A−1 written from the 2 first 79

iterations of the ARAS iterative process (4). Those 2 iterations compute the Schwarz 80

solutions sequence on the interface needed in order to accelerate the Schwarz method 81

by the Aitken’s acceleration. We now write 2 iterations of the ARAS iterative pro- 82

cess (4) for any initial guess and for all uk−1 ∈ R
m. 83

uk+1 = uk−1 +
(

2M−1
ARAS,δ −M−1

ARAS,δ AM−1
ARAS,δ

)(
f −Auk−1

)

Then we defined the ARAS2 preconditioner as 84

M−1
ARAS2,δ = 2M−1

ARAS,δ −M−1
ARAS,δ AM−1

ARAS,δ (6)

Hence, if P is known exactly there is no need to use ARAS as a preconditioning tech- 85

nique. Nevertheless, when P is approximated, the Aitken’s acceleration of the con- 86

vergence depends on the local domain solving accuracy, and the cost of the building 87

of an exact P depends on the size n. This is why P is numerically approximated by 88

PUq , defining q≤ n orthogonal vectors Uq ∈ Rn×q, that are able to approximate most 89

of the solution at the interface Γ . Then ARAS(Uq) and ARAS2(Uq) can be defined 90

as: 91
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M−1
ARAS(Uq),δ =

(
Im +RT

ΓUq

((
Iq−PUq

)−1− Iq

)
U

T
q RΓ

) p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ (7)

and 92

M−1
ARAS2(Uq),δ = 2M−1

ARAS(Uq),δ −M−1
ARAS(Uq),δ AM−1

ARAS(Uq),δ (8)

As the basis Uq can only give an approximation of the searched solution at the inter- 93

face, it make sense to use M−1
ARAS(Uq),δ and M−1

ARAS2(Uq),δ as preconditioners. 94

2.2 Orthogonal Basis Uq Arising from SVD of the Interface’s Solutions of 95

Richardson Process 96

The objective is to compute PUq saving as much computing as possible. The singular 97

value decomposition offers a tool to concentrate the effort only on the main parts of 98

the solution. A singular-value decomposition of a real n× q (n > q) matrix Y is its 99

factorization into the product of three matrices Y =UqΣV
∗, where Uq = [U1, . . . ,Uq] 100

is an n× q matrix with orthonormal columns, Σ is an n× q nonnegative diagonal 101

matrix with Σii =σi, 1≤ i≤ q and the q×q matrixV= [V1, . . . ,Vq] is orthogonal. The 102

left Uq and right V singular vectors are the eigenvectors of YY ∗ and Y ∗Y respectively. 103

It readily follows that Avi = σiui, 1 ≤ i ≤ q. We are going to recall some properties 104

of the SVD. Assume that the σi,1 ≤ i ≤ q are ordered in decreasing order and there 105

exists an r such that σr > 0 while σr +1 = 0. Then A can be decomposed in a dyadic 106

decomposition: 107

Y = σ1U1V ∗1 +σ2U2V ∗2 + . . .+σrUrV
∗
r . (9)

This means that SVD provides a way to find optimal lower dimensional approxima- 108

tions of a given series of data. More precisely, it produces an orthonormal basis for 109

representing the data series in a certain least squares optimal sense. 110

The orthogonal “basis” Uq is obtained as follows. q iterations of the Richardson 111

process uk = uk−1 +M−1
RAS,δ ( f − Auk−1) are performed and RΓ uk ∈ R

n,1 ≤ k ≤ q 112

belonging to the interface Γ are stored in a matrix Y ∈ R
n×q. Then the SVD of Y 113

is computed to obtain the matrix Uq with an arithmetic cost less than the one of a 114

local solution. It leads to efficiency and low computational cost as illustrated in [1]. 115

Nevertheless, the preconditioner ARAS2(Uq) obtained is solution dependent. 116

2.3 Building of the PUq Matrix 117

The matrix PUq can be computed as follows keeping the q+1 first singular values of 118

the SVD greater than a set tolerance, we writes: 119

Y1:q,1:q+1 = Σ1:q,1:qV
T
1:q,1:q+1 (10)

E1:q,1:q+1 = Y1:q,2:q+1−Y1:q,1:q (11)

If E1:q,1:q is invertible then (12)

PUq = E1:q,2:q+1 E−1
1:q,1:q (13)
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The previous building requires the inversion of the matrix E1:q,1:q which can be ill 120

conditioned. It is why the second building of matrix PUq that follows is prefered. 121

Selecting the q first singular values of the SVD greater than a set tolerance, one 122

iteration of the RAS algorithm is applied on the q the homogeneous problems where 123

Ui,1≤ i≤ q is set as boundary condition on the interface Γ . The result of this RAS 124

iterate with M−1
RAS,δ on the boundary Γ is the column of PUq associated with the 125

component Ui of the basis. Let us notice that this q computing can be made in the 126

same time considering the q right hand sides in a matrix form. 127

3 Numerical Experiments on 2D and 3D Industrial Problems 128

from Navier-Stokes Equations 129

In this section we focus on solving linear systems coming from industrial problems 130

with the ARAS2 preconditioning technique. The sparse matrices correspond to the 131

assemblage of all the elementary Jacobian matrices resulting from the partial first- 132

order derivations with respect to the conservative fluid variables of the discrete steady 133

(real) Reynolds-averaged Navier-Stokes equations. We note here that the Jacobian 134

matrix is non-symmetric and is non positive definite. 135

Table 1 summarizes the main features of the linear systems from the two cases 136

solved. Those cases are available in the sparse matrix collection [3]. Turbulence is 137

considered in the 2D and 3D cases. We partition the system with PARMETIS into 138

p subdomains. We must notice that for such problems with non-elliptic operators, 139

the ILU factorization is hazardous. Then, the preconditioner is computed from exact 140

factorization of local operators. 141

Figure 1 presents for the case PR02 the convergence behaviour of the Richard- 142

son and the GMRES preconditioned by the ARAS2 preconditioner where the PUq 143

is approximated by SVD. For this matrix the RAS Richardson process diverges. If 144

the number of singular values kept is not sufficient, the ARAS2 process diverges as 145

well. If we used 60 iterates of RAS Richardson process then the “full” PUq makes 146

the ARAS2 Richardson process converge in one iterate. Nevertheless ARAS2 works 147

quite well in both cases as a preconditioner of the GMRES method. We must notice 148

that here we have an effective gain to use the ARAS2 instead of RAS as Richardson 149

process. The same behavior is also retrieved when ARAS2 is used as preconditioner. 150

For a 3D case the number of non-zero and the band profile increase. Then solving 151

local problems by LU factorization begins to be expensive in terms of memory. A 152

better approach consists of solving subproblems by an iterative method. For the case 153

RM07, we choose to solve subproblems by a GMRES preconditioned by ILU. The 154

idea to save computational time is to approximate the Aitken’s acceleration with the 155

basis arising from SVD and solving subproblems with less accuracy for the comput- 156

ing of the preconditioner. Table 2 shows the good strong numerical scalability of the 157

ARAS2 preconditioning compare to the RAS. 158
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case ID order dim nn nnz
PR02 161 070 2D 23 010 8 185 136
RM07 381 689 3D 54 527 37 464 962

Table 1. Main features of the linear systems with order the size of the matrix with real coeffi-
cients, dim the dimension of the problem, nn is the number of mesh nodes, nnz is the number
of non-zero elements in the matrix
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Fig. 1. Solving 2D Navier Stokes equation with turbulence (CASE PR02), PARMETIS par-
titioning, p = 4, overlap 2, ARAS2 is built with a SVD basis, (left) Convergence of Iterative
Schwarz Process, (right) convergence of GMRES method preconditioned by RAS and ARAS2

p RAS ARAS(36) ARAS2(36)
3 87 (1.) 77 (1.1299) 53 (1.6415)
6 112 (1.) 93 (1.2043) 63 (1.7778)

12 171 (1.) 124 (1.3790) 84 (2.0357)

Table 2. CASE RM07 : Number of GMRES iterations (ratio of iterations with RAS over
iterations with ARAS or ARAS2) for a tolerance 1e-10, overlap 1.
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