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1 Summary 9

In this paper, we study robust two-level domain decomposition preconditioners for 10

highly anisotropic multiscale problems. We present a construction of coarse spaces 11

that emploies initial multiscale basis functions and discuss techniques to achieve 12

smaller dimensional coarse spaces without sacrificing the robustness of the precon- 13

ditioner. We also present numerical results and consider possible extensions of these 14

approaches where the dimension of the coarse space can be reduced further. 15

2 Introduction 16

Anisotropy in the diffusion arises in many applications in geosciences and engi- 17

neering. In flows porous media, high anisotropy can be due to the presence of frac- 18

tures that may have preferred high-conductivity directions. Because of high varia- 19

tions among the matrix and fracture conductivities, the permeability can have high 20

anisotropy at the fine-scale. This is the case when fracture network conducts only in 21

some preferred directions (e.g., in one direction in 2D problems and one or two di- 22

rections in 3D problems). This preferred direction is the direction of high anisotropy 23

and it can have heterogeneous spatial variations. For example, the presence of frac- 24

ture pockets can create highly anisotropic isolated regions, while fracture corridors 25

can form long highly anisotropic channels that span a rich hierarchy of scales. It is a 26

challenging task to design robust preconditioners for such problems (e.g., [4]) or to 27

solve them on a coarse grid (e.g., [2]). 28

In this paper, we discuss robust preconditioners for highly anisotropic multiscale 29

diffusion problems. We assume that the high-anisotropy is also highly heterogeneous 30

over the problem domain and these spatial variations cannot be captured within a 31

coarse block. In the paper, robust two-level domain decomposition preconditioners 32

are constructed by designing coarse spaces that contain essential features of the fine- 33

scale solution. The construction of the coarse spaces is based on recently introduced 34
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methods [1, 3]. We show that, for anisotropic problems, the coarse spaces can have 35

a large dimension because fine-scale features within high-anisotropy regions need 36

to be represented on a coarse grid. In this paper, we propose a number of remedies 37

for this problem. Note that the proposed methods differ from existing methods for 38

anisotropic problems [4]. 39

The coarse spaces used in two-level domain decomposition preconditioners are 40

constructed based on local spectral problems with a pre-computed scalar weight 41

function. The computation of the weight function uses an initial coarse space where 42

one basis function per coarse node is defined. We show that the local eigenvalue 43

problem can contain many small eigenvalues, which are asymptotically vanishing as 44

the contrast increases. One needs to include all eigenvectors that correspond to these 45

small, asymptotically vanishing, eigenvalues. Because the number of these small 46

eigenvalues defines the dimension of the coarse space, it is important to choose a 47

weight function such that the dimension of the coarse space is as small as possible. 48

If we consider the initial space as the span of piecewise (bi)linear functions, then the 49

dimension of the coarse space can be very large. In particular, the coarse space con- 50

tains all fine-scale functions with respect to the slow variable (defined as the variable 51

representing the direction of slow conductivity) within high-anisotropy regions. On 52

the other hand, using multiscale basis functions [2] in the initial space allows cap- 53

turing the effects of high-conductivity inclusions (cf. [1, 3]) that are isolated within 54

coarse grid blocks. As a result, the coarse space contains all fine-scale functions 55

with respect to slow variables within high-anisotropy channels. This can lead to a 56

substantial dimension reduction; however, unlike to the isotropic high-conductivity 57

case, the dimension of the coarse space can still be very large as discussed in the 58

paper. Numerical results are presented. We also discuss techniques that allow us to 59

use smaller dimensional coarse spaces at the expenses of solving several lower di- 60

mensional problems in the channels of high-anisotropy. 61

3 Problem Setting and Domain Decomposition Framework 62

Let D⊂R
2 (or R3) be a polygonal domain which is the union of a disjoint polygonal 63

subregions {Di}N
i=1. We seek u ∈ H1

0 (D) 64

a(u,v) :=
∫

D
κ(x)∇u ·∇vdx =

∫
D

f vdx, where κ(x) =
(

η(x) 0
0 1

)
. (1)

Here η(x) is a heterogeneous field with high contrast, η(x)≥ 1. More general cases 65

where the direction of anisotropy can change continuously in space will be consid- 66

ered elsewhere. Next, we introduce some notations following [1]. 67

We assume that {Di}N
i=1 form a quasiuniform triangulation of D and denote H = 68

maxi diam(Di). Let T h be a fine triangulation which refine {Di}N
i=1. We denote by 69

V h(D) the usual finite element discretization of piecewise linear continuous functions 70

with respect to the fine triangulation T h. Denote also by V h
0 (D) the subset of V h(D) 71

with vanishing values on ∂D. Similar notations, V h(Ω) and V h
0 (Ω), are used for 72

subdomains Ω ⊂ D. 73
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The Galerkin finite element approximation of (1) is to find u ∈ V h
0 (D) with 74

a(u,v) =
∫

D f v for all v ∈V h
0 (D), or in matrix form 75

Au = b, (2)

where for all u,v ∈V h(D) (considered as vectors) we have vT Au = a(u,v) and vT b = 76∫
D f v. We assume that κ is piecewise constant coefficient in T h with value κ = κe = 77

(ηe,0;0,1) on each fine triangulation element e ∈T h. 78

We denote by {D′i}N
i=1 the overlapping decomposition obtained from the original 79

nonoverlapping decomposition {Di}N
i=1 by enlarging each subdomain Di to D′i = 80

Di∪{x∈D,dist(x,Di)< δi}, i= 1, . . . ,N, where dist is some distance function and 81

let δ = max1≤i≤N δi. Let V h
0 (D

′
i) be the set of finite element functions with support 82

in D′i. We also denote by RT
i : V h

0 (D
′
i)→V h(D) the extension by zero operator. 83

We use a partition of unity {ξi}N
i=1 subordinated to the covering {D′i}N

i=1 such 84

that 85

N

∑
i=1

ξi = 1, ξi ∈V h(D), 0≤ ξi ≤ 1 and Supp(ξi)⊂ D′i, i = 1, . . . ,N, (3)

where Supp(ξi) stands for the support of the function ξi. This partition of unity is 86

used to truncate global functions to local conforming functions, an essential property 87

in the construction of a stable splitting of the space. 88

Given a coarse triangulation T H , we introduce Nc coarse basis functions {Φi}Nc
i=1. 89

We define the coarse space by V H
0 = span{Φi}Nc

i=1, and the coarse matrix A0 =R0ART
0 90

where RT
0 = [Φ1, . . . ,ΦNc ]. We use a two level additive preconditioner of the form 91

B−1 = RT
0 A−1

0 R0 +
N

∑
i=1

RT
i A−1

i Ri = RT
0 A−1

0 R0 +B−1
1L , (4)

where B−1
1L = ∑N

i=1 RT
i A−1

i Ri and the local matrices are defined by vAiw = a(v,w) for 92

all v,w ∈V h
0 (D

′
i), i = 1, . . . ,N (see [5]). 93

We denote by {yi}Nv
i=1 the vertices of the coarse mesh T H and define 94

ωi =
⋃
{K ∈ T H ; yi ∈ K}, ωK =

⋃
{ω j; y j ∈ K}. (5)

Additionally, we use a partition of unity {χi}Nv
i=1 subordinated to the covering 95

{ωi}Nv
i such that 96

Nv

∑
i=1

χi = 1, χi ∈V h(D), 0≤ χi ≤ 1 and Supp(χi)⊂ ωi, i = 1, . . . ,Nv. (6)

4 Coarse Space Construction and Dimension Reduction 97

In this section we define a local spectral multiscale coarse space using eigenvectors of 98

high-anisotropy eigenvalue problems. First we introduce the notation for eigenvalue 99
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problems following [1]. For i = 1, . . . ,Nv, define the matrix Aωi and the modified 100

mass matrix of same dimension Mωi by 101

vT Aωiw =

∫
ωi

κ∇v ·∇wdx and vT Mωiw =

∫
ωi

κ̃vwdx ∀v,w ∈ Ṽ h(ωi), (7)

where Ṽ h(ωi) = {v∈V h(ωi) : v= 0 on ∂ωi∩∂D}. Here κ̃ is an scalar weight derived 102

from the high-anisotropy coefficient matrix κ = [κi j] and contains the relevant infor- 103

mation we need for the construction of the coarse basis functions. Several possible 104

choices for κ̃ can be considered. Here κ̃ is defined by 105

κ̃ = max

{
N

∑
i=1

κ∇ξi ·∇ξi,
Nv

∑
j=1

κ∇χ j ·∇χ j

}
, (8)

where {ξ j}N
j=1 and {χi}Nv

i=1 are the partition of unity introduced in (3) and (6), re- 106

spectively. From now on, we assume that the overlapping decomposition is con- 107

structed from the coarse mesh and then ξi = χi and D′i = ωi for all i = 1, . . . ,N = Nv, 108

and δ � H. We consider the finite dimensional symmetric eigenvalue problems 109

Aωiψ = λ̃ Mωi ψ , with Aωi and Mωi defined by (7) and (8), i = 1, . . . ,N. Denote its 110

eigenvalues and eigenvectors by {λ̃ ωi
� } and {ψωi

� }, respectively. Note that the eigen- 111

vectors {ψωi
� } form an orthonormal basis of Ṽ h(ωi) with respect to the Mωi inner 112

product. Assume that λ̃ ωi
1 ≤ λ̃ ωi

2 ≤ ·· · ≤ λ̃ ωi
� ≤ . . . , and note that λ̃ ωi

1 = 0 for all 113

interior subdomains. In particular, ψωi
� denotes the �-th eigenvector of the matrix 114

associated to the neighborhood of yi, i = 1, . . . ,Nv. 115

Let {χi}Nv
i=1 be a partition of unity (3). Define the coarse basis functions 116

Φi,� = Ih(χiψωi
� ) for 1≤ �≤ Li and 1≤ i≤ Nv, (9)

where Ih is the fine-scale nodal value interpolation and Li is an integer number for 117

each i = 1, . . . ,Nv. Denote by V H
0 the spectral multiscale space 118

V H
0 = span{Φi,� : 1≤ �≤ Li and 1≤ i≤ Nv}. (10)

The idea is to use only eigenvectors of contrast dependent eigenvalues. Next, we 119

discuss how the choice of κ̃ affects the eigenvalues. If we choose χi to be piece- 120

wise linear functions on the coarse grid, then, it is easy to see that we have 121

κ̃(x1,x2) = ∑i η(x1,x2)|∂x1 χi(x1,x2)|2 + |∂x2 χi(x1,x2)|2 and κ̃ will have similar be- 122

havior as η(x). In this case, one can show that the number of small eigenvalues is 123

the same as the fine degrees of freedom in the form of discrete functions that de- 124

pend on x2 within high-anisotropy inclusions and channels. Indeed, if we consider 125

the associated Rayleigh quotient, R(v) = vT Aωi w
vT Mωi w

, we have 126

R(v) =

∫
ωi

κ∇v ·∇v∫
ωi

κ̃v2 =

∫
ωi

η(x1,x2)|∂x1v(x1,x2)|2 + |∂x2v(x1,x2)|2∫
ωi
(∑i η(x1,x2)|∂x1 χi(x1,x2)|2 + |∂x2 χi(x1,x2)|2)v(x1,x2)2 . 127

Then, for functions that depends only on x2 inside the region R where η is high, 128

the numerator reduces to
∫

ωi\R
(|∂x1v(x1,x2)|2 + |∂x2v(x1,x2)|2

)
+

∫
R |∂x2 v(x1,x2)|2 129
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(which is independent of the high value of η(x) in R) and the quotient will go to zero 130

as the value of η in R goes to infinity. Including all fine grid functions of x2 into the 131

coarse space can lead to a high dimensional coarse spaces. Note that the dimension 132

of the coarse space will be much higher than the case with scalar coefficient κ where 133

the number of small eigenvalues is equal to the number of isolated inclusions and 134

channels within a coarse block; see [1, 3]. To reduce the dimension of the coarse 135

space, we propose the use of multiscale basis functions. 136

We are interested in partition of unity functions that can reduce the number of 137

degrees of freedom associated with isolated high-anisotropy inclusions. This can be 138

achieved by minimizing high-conductivity components for the scalar function κ̃ . In 139

particular, by choosing multiscale finite element basis functions or energy minimiz- 140

ing basis functions (e.g., [6]), we can eliminate all isolated high-conductivity inclu- 141

sions. This can be observed in our numerical experiments. We recall the definition of 142

the “standard” multiscale finite element basis functions that coincide with (the piece- 143

wise linear functions on the coarse grid) χ0
i on the boundaries of the coarse partition. 144

They are denoted by χms
i and satisfy: 145

−div(κ∇χms
i ) = 0 in K ∈ ωi, χms

i = χ0
i in ∂K, ∀ K ∈ ωi, (11)

where K is a coarse grid block within ωi, see [2] for more details and more general 146

multiscale basis functions constructions. In Fig. 1, we depict η(x) (left picture) and κ̃ 147

(right picture) using multiscale basis functions on the coarse grid. One can observe 148

that isolated inclusions are removed in κ̃ . The coarse space contains functions de- 149

pending only on x2 within long channels. The situation is more complicated if high- 150

anisotropy regions form complex channel patterns. For example, if high-anisotropy 151

region is vertical for the coefficients considered in our numerical example, then ini- 152

tial multiscale spaces can represent them and no additional degrees are needed. More 153

complex channel shapes will be studied elsewhere. 154

We note that for the proposed methods, in each ωi, i = 1, . . . ,Nv, we only need to 155

specify the number of eigenvectors Li based on the quantities {1/λ̃ ωi
l }. These eigen- 156

vectors are used to construct the coarse space. In practice, one only needs to compute 157

the first Li eigenvalues. Hierarchical approximation with several triangulations can 158

also be considered for the eigenvalues and eigenvectors. 159

Weighted L2 approximation and weighted H1 stability properties of the coarse 160

space V H
0 in (10) hold (as in [1, 3]). In order to describe better these properties of 161

V H
0 , we need to introduce a relevant interpolation operator. Given v ∈V h(ωi), set 162

Iωi
Li

v =
Li

∑
�=1

(∫
ωi

κ̃vψωi
� dx

)
ψωi
� , i = 1, . . . ,Nv, (12)

and define the coarse interpolation I0 : V h(D)→V H
0 by 163

I0v =
Nv

∑
i=1

Li

∑
�=1

(∫
ωi

κ̃vψωi
� dx

)
Ih(χiψωi

� ) =
Nv

∑
i=1

Ih
(

χi(I
ωi
Li

v)
)
, (13)

where Ih is the fine-scale nodal value interpolation. 164
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Lemma 1. For each coarse element K we have 165

•
∫

K κ̃(v− I0v)2 � λ̃−1
K,L+1

∫
ωK

κ∇v ·∇vdx 166

•
∫

K κ∇I0v ·∇I0vdx�max{1, λ̃−1
K,L+1}

∫
ωK

κ∇v ·∇vdx, 167

where λ̃K,L+1 = minyi∈K λ̃ ωi
Li+1 and ωK is defined in (5). 168

Using Lemma 1, we can estimate the condition number of the preconditioned 169

operator B−1A with B−1 defined in (4) using the coarse space V H
0 in (10). Following 170

[1, 3], one has the following result. 171

Theorem 1. The condition number, cond(B−1A), of the preconditioned operator 172

B−1A with B−1 defined in (4) satisfies 173

cond(B−1A)� 1+ λ̃−1
L+1, where λ̃L+1 = min

1≤i≤Nv
λ̃ ωi

Li+1. 174

Recall that we assumed ξi = χi, i = 1, . . . ,N = Nv. It can be easily shown that 175

if we choose Li as the number of contrast dependent eigenvalues, then λ̃L+1 scales 176

as O(1), i.e., independent of the contrast. The dependency of the condition number 177

on δ and H is controlled by the partition of unity {χi}. The condition number is 178

independent of h and it is, in the general case of different partitions of unity, {χi} 179

and {ξi}, of order O(H2/δ 2), see [3]. 180

5 Numerical Results 181

In this section, we show representative 2D numerical results for the additive precon- 182

ditioner (4) with the local spectral multiscale coarse space defined in (10). We take 183

D = [0,1]× [0,1] that is divided into 10×10 equal square coarse blocks to construct 184

the coarse mesh. Inside each coarse block we use a fine-scale triangulation where 185

triangular elements constructed from 10×10 squares are used. 186

We test our approach on a permeability field that contains inclusions and channels 187

on a background of conductivity one (see the left picture of Fig. 1 for η(x) in (1)). 188

We use multiscale finite element basis functions as the initial partition of unity. From 189

the right picture of Fig. 1 we see that the modified weight κ̃ does not contain any iso- 190

lated inclusions and only contains long high-anisotropy channels connecting bound- 191

aries of coarse-grid blocks. This is automatically achieved from the choice of the 192

partition of unity functions. There are fewer small (asymptotically vanishing) eigen- 193

values when local eigenvalue problem is solved with the modified weight κ̃ . Thus, 194

a good choice of partition of unity functions χi in (8) will ensure fewer new multi- 195

scale basis functions needed to achieve an optimal convergence with respect to the 196

contrast. Numerical results are presented in Table 1. We observe that using the pro- 197

posed coarse spaces, the number of iterations is independent of contrast. In Table 1 198

we also show the dimension of the coarse spaces. The dimension of the local spectral 199

coarse space is smaller if we use κ̃ in (10) with multiscale basis functions instead of 200

piecewise linear basis functions. 201
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Fig. 1. Left: Coarse mesh and coefficient (we plot η(x) = 106 and recall that η(x) = 1 else-
where). Right: Coefficient κ̃ in (8) using multiscale basis functions (we plot κ̃(x)≥ 106). See
Table 1

th
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fig
ur

e
w

ill
be
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in
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d
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w

t1.1η LIN MS EMF LSM (bilin. χi) LSM (MS χi)
t1.2103 113(1.48e+2) 122(1.51e+2) 115(1.81e+2) 53(23.21) 55(26.9)
t1.3104 257(1.35e+3) 258(1.28e+3) 231(9.70e+2) 41(53.63) 28(5.82)
t1.4105 435(1.34e+4) 483(1.26e+4) 416(9.64e+3) 28(5.642) 29(6.02)
t1.5106 627(1.34e+5) 709(1.27e+5) 599(9.63e+4) 30(5.753) 29(6.04)

t1.6Dim 81=0.79% 81=0.79% 81=0.79% 732=7.19% 497=4.87%

Table 1. Number of iterations and estimated condition number for the PCG and various val-
ues of η with the coefficient depicted in Figure 1. We set the tolerance to 1e−10, H = 1/10,
h = 1/100, and dim(Vh) = 10201. The notation MS stands for the (linear boundary condition)
multiscale (MS) coarse space, EMF is the energy minimizing coarse space, see e.g., [6], and
LSM is the local spectral multiscale coarse space defined in (10). We select the first L eigen-
values such that λ̃L− λ̃L−1 > 0.05 (which is and easy way to select the small eigenvalues- in
this example, the value 0.05 was chose by trial-and-error).

6 Discussion on Coarse Space Dimension Reduction 202

Now we discuss approaches to avoid the use of high-dimensional coarse spaces with- 203

out sacrificing the efficiency of the preconditioner at the expense of solving problems 204

in high-anisotropy channels. As was observed in the presented numerical tests, the 205

strongly anisotropic channels cause a substantial increase of the size of the coarse 206

space and the complexity of the method. To avoid this, we can replace the coarse 207

solve RT
0 A−1

0 R0 in (4) by RT
0 Ã−1

0 R0 + RT
anA−1

an Ran. Here the matrix Ã0 is a small 208

dimensional coarse matrix. The matrix Aan is acting on the fine-mesh degrees re- 209

stricted to subdomain of high-anisotropy channels Ωan. It is based on the original 210

matrix A and is constructed locally (element-by-element) by preserving the strongest 211

links (off-diagonal entries) of the element stiffness matrices in the channels. To 212

illustrate this idea, which was developed in [4] for Crouzeix-Raviart elements, we 213

write an element stiffness matrix Ae for e⊂Ωan: Ae = [be+ce, −ce, −be;−ce, ae+ 214

ce, −ae;−be, −ae, ae +be], where |ae| ≤ be ≤ ce. Then the matrix Aan is defined as 215

assembly of the matrices Be = [ce, −ce, 0;−ce, ce, 0;0, 0, 0], e ⊂ Ωan. It is easy 216
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to see that Aan is a stiffness matrix corresponding to a diffusion problem defined 217

on a carcass of piecewise linear lines in Ωan following the directions of dominating 218

anisotropy. 219

In the case of apparent dominant anisotropy direction (i.e., when Aan is block 220

diagonal with tridiagonal blocks), inverting Aan will involve solving block-diagonal 221

problems with tridiagonal blocks (in 2-D only). In this case optimal complexity is 222

achieved by using a sparse direct solver. In general, one may consider including 223

some of the degrees of freedom associated with high-anisotropy regions into the 224

coarse space while using A−1
an to handle the others. Another possibility is to use an 225

auxiliary space of Crouzeix-Raviart elements combined with the technique from [4]. 226

These issues will be studied in our subsequent work. 227
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