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Summary. We propose and analyze a hybrid discontinuous Galerkin method for the solution 10

of incompressible flow problems, which allows to deal with pure Stokes, pure Darcy, and 11

coupled Darcy-Stokes flow in a unified manner. The flexibility of the method is demonstrated 12

in numerical examples. 13

1 Model Problem 14

Let Ω ⊂ R
d be a bounded Lipschitz domain in d = 2 or 3 dimensions. Given data 15

f ∈ [L2(Ω)]d and g ∈ L2(Ω), we consider the generalized Stokes problem 16

σu−2μ divε(u)+∇p = f and divu = g in Ω . (1)

As usual, u denotes the velocity, p the pressure, and ε(u) := 1
2 (∇u+∇uT ) is the 17

symmetric part of the velocity gradient tensor. We require that 18

σ ≥ 0, μ ≥ 0, and M ≥ σ + μ ≥ m > 0 in Ω .

For convenience, we assume that σ , the reciprocal of the permeability, and the vis- 19

cosity μ are constant, and consider homogeneous boundary conditions 20

u|∂Ω = 0 if μ > 0 or u ·n|∂Ω = 0 if μ = 0. (2)

The unique solvability of the boundary value problem (1)–(2) is guaranteed, if 21

the pressure p and the data g have zero average. For the case μ > 0, we then 22

have (u, p) ∈ H1
0(Ω)× L2

0(Ω), where H1
0(Ω) := {v ∈ [H1(Ω)]d : v|∂Ω = 0} and 23

L2
0 := {q ∈ L2(Ω) :

∫
Ω q dx = 0}. In the Darcy limit μ = 0, we only have u ∈ 24

H0(div;Ω) := {v ∈ [L2(Ω)]d : divv ∈ L2(Ω), v ·n|∂Ω = 0}. 25

For the approximation of problem (1)–(2), we consider a hybrid discontinuous 26

Galerkin method, which is capable of treating incompressible flow in the Stokes 27
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and Darcy regimes, as well as coupled problems in a unified manner. Our analysis 28

extends the results of [7] for Stokes flow. Related work on stabilized non-conforming 29

and discontinuous Galerkin methods for Darcy-Stokes flow can be found in [4, 8] and 30

the references given there. We refer to [1, 5] for a unified treatment of discontinuous 31

Galerkin methods for elliptic problems and their hybridization. 32

2 Notation and Preliminaries 33

Let Th = {T} be a shape-regular quasi-uniform partition of Ω into affine families 34

of triangles and/or quadrilaterals (tetrahedra and/or hexahedra) of size h. By ∂Th := 35

{∂T : T ∈Th}, we denote the set of element boundaries, and by Eh := {Ei j = ∂T i∩ 36

∂T j : i > j}∪{Ei,0 = ∂T i∩∂Ω} the set of edges (faces) between elements or on the 37

boundary; E =
⋃

E∈Eh
E is called the skeleton. 38

For s≥ 0, let Hs(Th) := {v∈L2(Ω) : v|T ∈Hs(T ) for all T ∈Th} denote the bro- 39

ken Sobolev space with inner product (u,v)s,Th := ∑T∈Th
(u,v)s,T and norm ‖u‖s,Th; 40

the subindex is omitted for s = 0. Piecewise defined derivatives are denoted with 41

the standard symbols. The traces of functions in H1(Th) lie in L2(∂Th), which is 42

equipped with the scalar product 〈u,v〉∂Th
:= ∑T∈Th

〈u,v〉∂T and norm |v|∂Th
. Any 43

function in L2(E ) can be identified with a function in L2(∂Th) by doubling its values 44

on the element interfaces. Bold symbols are used for vector valued functions. 45

Let Pp(T ) denote the polynomials of degree≤ p over T , and recall that 46

|vp|2∂T ≤ cT p
2h−1‖vp‖2

T for all vp ∈Pp(T ). (3)

Explicit bounds for the constant cT in the discrete trace inequaliy (3) are known for 47

all elements under consideration. The parameter cT can be replaced by the shape 48

regularity parameter γ := max{cT : T ∈Th}, which is assumed to be independent of 49

h. We then choose a stabilization parameter α such that 50

4γp2h−1 ≤ α ≤ 4γ ′p2h−1, (4)

with γ ′ independent of p and h, and we define two norms on L2(∂Th) by 51

|v|±1/2,∂Th
:=

(
∑T∈Th

|v|2±1/2,∂T

)1/2
with |v|±1/2,∂T := α±1/2|v|∂T .

Similar norms are frequently used for the analysis of mixed, non-conforming and 52

discontinuous Galerkin methods; see e.g. [1]. 53

3 The Hybrid DG Method 54

Let us fix p ≥ 1, and choose q = p− 1 or q = p. For the approximation of velocity 55

and pressure in (1)–(2), we will utilize the finite element spaces 56
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Vh := {vh ∈ L2(Th) : vh|T ∈ [Pp(T )]
d for all T ∈ Th},

Qh := {qh ∈ L2
0(Ω) : qh|T ∈Pq(T ) for all T ∈Th}.

We further choose p̂= p or p̂= q, and define a space 57

V̂h := {v̂h ∈ L2(E ) : v̂h|E ∈ [Pp̂(E)]
d for all E ∈ Eh, v̂h = 0 on ∂Ω},

of piecewise polynomials for representing velocities on the skeleton. The conditions 58

p−1 ≤ q ≤ p and q ≤ p̂ are explicitly used in the analysis of a Fortin operator; see 59

Proposition 5. In view of Lemma 1, we also require that p̂≥ 1. Note that the Dirichlet 60

boundary condition has been included explicitly in the definition of the hybrid space 61

V̂h. We further denote by πp : H1(Th)→Vh and π̂ p̂ : L2(E )→ V̂h, the L2 orthogonal 62

projections onto the discrete spaces. The boundary value problem (1)–(2) is then 63

approximated by the following finite element scheme. 64

Method 1. Find uh ∈ Vh, ûh ∈ V̂h, and ph ∈ Qh, such that 65

{
ah(uh, ûh;vh, v̂h)+bh(vh, v̂h; ph) = (f,vh)Th ,
bh(uh, ûh;qh) = (g,qh)Th ,

for all vh ∈ Vh, v̂h ∈ V̂h, and qh ∈ Qh. The bilinear forms are defined as 66

ah(u, û;v, v̂) := σdh(u, û;v, v̂)+ 2μsh(u, û;v, v̂),

bh(v, v̂;q) :=−(divv,q)Th + 〈v− v̂,qn〉∂Th
,

and the bilinear forms dh and sh are given by 67

dh(u, û;v, v̂) := (u,v)Th +α〈(π̂ p̂u− û) ·n,(π̂ p̂v− v̂) ·n〉∂Th
,

sh(u, û;v, v̂) := (ε(u),ε(v))Th −〈ε(u) ·n,v− v̂〉∂Th

−〈u− û,ε(v) ·n〉∂Th
+α〈π̂ p̂u− û, π̂ p̂v− v̂〉∂Th

.

One easily verifies that any regular solution of (1)–(2) also satisfies the discrete vari- 68

ational principle above. 69

Proposition 1 (Consistency). Let (u, p) denote a solution of (1)–(2), and assume 70

additionally that u ∈H2(Th) and p ∈ H1(Th). Then 71

ah(u,u;vh, v̂h)+bh(vh, v̂h; p) = (f,vh)Th and bh(u,u;qh) = (g,qh)Th

for all vh ∈Vh, v̂h ∈ V̂h, and qh ∈ Qh; thus, Method 1 is consistent. 72

In the Darcy limit μ = 0, it suffices to require u ∈H1(Th). 73

4 Stability and Error Analysis 74

An important ingredient for our analysis will be the following result. 75
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Lemma 1 (Discrete Korn inequality). Let p̂≥ 1. Then there is a κ > 0 independent 76

of h, such that for all v ∈H1(Th) and v̂ ∈ L2(E ), there holds 77

‖ε(v)‖2
Th

+ |π̂ p̂(v− v̂)|21/2,∂Th
≥ κ‖∇v‖2

Th
. (5)

Proof. The statement follows via the triangle inequality from Korn’s inequality for
piecewise H1 functions [3, Eq. (1.12)] established by Brenner. �
Proposition 2. For any (vh, v̂h) ∈ Vh× V̂h there holds 78

sh(vh, v̂h;vh, v̂h)≥min{ 5
12 ,

κ
4 }

(‖∇u‖2
Th

+ |π̂ p̂(u− û)|21/2,∂Th

)
. 79

Proof. By Young’s inequality, Eq. (3) and (4), we obtain 80

−2〈ε(vh) ·n,vh− v̂h〉∂T ≥− 3
4‖ε(vh)‖2

T − 1
3 |π̂ p̂(vh− v̂h)|21/2,∂T . 81

The result then follows by Lemma 1, and the definition of sh. �
For appropriately characterizing the coercivity of the bilinear form dh, let us intro- 82

duce the discrete kernel space for the bilinear form bh, namely 83

Kh := {(vh, v̂h) ∈ Vh× V̂h : bh(vh, v̂h;qh) = 0 ∀qh ∈ Qh}. 84

85

Proposition 3. For any pair of functions (vh, v̂h) ∈Kh there holds 86

dh(vh, v̂h;vh, v̂h)≥ ‖vh‖2
Th

+ ‖divvh‖2
Th

+ 3
4 |π̂ p̂(vh− v̂h) ·n|21/2,∂Th

. 87

Proof. Note that for every T ∈ Th we have divvh|T ∈Pq(T ). Testing with qh = 88

divvh and using (3) yields 89

‖divvh‖2
T = 〈(vh− v̂h) ·n,divvh〉∂T ≤ 1

2 |(π̂ p̂vh− v̂h) ·n|1/2,∂T‖divvh‖T ,

and hence ‖divvh‖Th ≤ 1
2 |(π̂ p̂vh− v̂h) ·n|1/2,∂Th

. The result then follows by adding
and subtracting ‖divvh‖2

∂Th
from the bilinear form dh. �

The two coercivity estimates suggest to utilize the following energy norms for the 90

stability analysis of Method 1, namely, ‖q‖0,Th and 91

‖(v, v̂)‖2
1,Th

:= σ
(‖v‖2

Th
+ ‖divv‖2

Th
+ |π̂ p̂(v− v̂) ·n|21/2,∂Th

)
+ μ

(‖∇v‖2
Th

+ |π̂ p̂(v− v̂)|21/2,∂Th

)
.

92

Remark 1. If μ = 0, then ‖(·, ·)‖1,Th is only a semi-norm on Vh× V̂h. This deficiency 93

can be overcome by eliminating the tangential velocities in the definition of the hy- 94

brid space, or by penalizing also the jump of the tangential velocities in the bilinear 95

form dh. Both remedies do not affect our analysis. 96

A combination of Propositions 2 and 3 now yields the kernel ellipticity for ah. 97
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Proposition 4 (Coercivity). For any element (vh, v̂h) ∈Kh there holds 98

ah(vh, v̂h;vh, v̂h)≥min{ 3
4 ,

κ
2 }‖(vh, v̂h)‖2

1,Th
. 99

The constants Ci appearing in the following results depend on the bounds m and M, 100

but are else independent of the parameters μ , σ , and of h and p. Let us next consider 101

the operator (πp, π̂ p̂) : H1
0(Ω)→ Vh× V̂h. 102

Proposition 5 (Fortin operator). For any v ∈H1
0(Ω) there holds 103

bh(πpv, π̂ p̂v;qh) = b(v,qh) ∀qh ∈ Qh, (6)

and ‖(πpv, π̂ p̂v)‖1,Th ≤Cπ p
1/2‖v‖1,Ω . (7)

Proof. Equation (6) follows from the properties of the projections, and (7) results
from stability estimates for the L2 projections; cf. [7] for details. �
The inf-sup stability of bh now follows directly from the previous result. 104

Proposition 6 (Inf-sup condition). For any qh ∈ Qh there holds 105

sup
(vh,v̂h)∈Vh×V̂h

bh(vh, v̂h;qh)

‖(vh, v̂h)‖1,Th

≥Cβ p
−1/2‖qh‖0,Th . (8)

As a consequence of Propositions 4 and 6, we obtain by Brezzi’s theorem that 106

Method 1 has a unique solution and thus is well-defined. Next, we show the bound- 107

edness of the bilinear forms with respect to a pair of stronger norms defined by 108

|||qh|||20,Th
:=‖qh‖2

Th
+|qh ·n|2−1/2,∂Th

and 109

|||(vh, v̂h)|||21,Th
:=‖(vh, v̂h)‖2

1,Th
+ μ |∂nvh|2−1/2,∂Th

,

The norms ‖ · ‖0,Th, ‖(·, ·)‖1,Th and |||·|||0,Th , |||(·, ·)|||1,Th are equivalent on the finite 110

element spaces with equivalence constants less than two. This yields coercivity and 111

inf-sup stability of ah and bh also with respect to the stronger norms. The following 112

bounds then follow from the Cauchy-Schwarz inequality. 113

Proposition 7 (Boundedness). For any û, v̂ ∈ V̂h ⊕L2(E ) and every function u, 114

v ∈ Vh⊕ (H1
0(Ω)∩H2(Th)), there holds 115

ah(u, û;v, v̂)≤Ca|||(u, û)|||1,Th |||(v, v̂)|||1,Th ,

and for all p ∈ Qh⊕ (L2
0(Ω)∩H1(Th)), there holds additionally 116

bh(u, û; p)≤Cb|||(u, û)|||1,Th |||p|||0,Th .

Standard polynomial approximation results [2] imply the following properties. 117
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Proposition 8 (Approximation). Assume s≥ 1. Then for any function u ∈H1
0(Ω)∩ 118

Hs+1(Th) there exist elements vh ∈Vh and v̂h ∈ V̂h such that 119

|||(u−vh,u− v̂h)|||1,Th ≤Cap p
1/2−shmin{p,s}‖u‖s+1,Th,

and for any p ∈ L2
0(Ω)∩Hs(Th) there exists a qh ∈ Qh such that 120

|||p−qh|||0,Th ≤Capp
−shmin{s,q+1}‖p‖s,Th.

The a-priori estimates now follow by combination of the previous results. 121

Proposition 9 (Error estimate). Let (u, p) be the solution of (1)–(2), and let 122

(uh, ûh, ph) denote the approximation defined by Method 1. Then 123

|||(u−uh,u− ûh)|||1,Th +p−1/2|||p− ph|||0,Th

≤Cerr p
1/2hmin{p,s}(p1/2−s‖u‖s+1,Th +p−s‖p‖s,Th

)
.

Proof. The result follows with the usual arguments from the consistency, discrete 124

stability, and boundedness of the bilinear forms, and the approximation properties of 125

the finite element spaces; for details, see [7] or [9]. 126

5 Remarks 127

The analysis of Sect. 4 applies almost verbatim to spatially varying material param- 128

eters μ and σ . In particular, a coupling of Darcy and Stokes equations in different 129

parts of the domain is possible and treated automatically. A numerical example for 130

such a case is presented in the next section. 131

Our results can be extended to shape regular meshes and varying polynomial 132

degree. Also meshes with a bounded number of hanging nodes on each edge or face, 133

and even more general non-conforming mortar meshes can be treated. We refer to 134

[6, 7] for a detailed discussion of conditions on the mesh and polynomial degree 135

distribution. 136

The coercivity and boundedness estimates also hold for more general finite 137

element spaces, but we explicitly utilized the complete discontinuity of the spaces 138

in the proof of the inf-sup condition. Other constructions of a Fortin-operator, cf. 139

e.g. [9], would allow to relax this assumption. 140

Our analysis also covers equal order approximations q= p, which are stabilized 141

sufficiently by the jump penalty terms. 142

All degrees of freedom except the piecewise constant pressure and the hybrid 143

velocities can be eliminated by static condensation on the element level. This leads 144

to small global systems, which for p̂ = 0 exhibit the same sparsity pattern as a non- 145

conforming P1−P0 discretization. For p̂ = 0, the discrete Korn inequality (5) is not 146

valid, so this choice had to be excluded here. If ε(u) in (1) is replaced by 1
2 ∇u, we 147

however obtain a stable scheme. 148
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6 Numerical Results 149

Let us now illustrate the capability of the proposed method to deal with incompress- 150

ible flow in various regimes. Our numerical results were obtained with an implemen- 151

tation of Method 1 in NGSolve.3 152

As a first example, we consider the generalized Stokes equation (1) on the unit 153

square Ω = (−1,1)2 with a known analytic solution given by 154

u =
(
20xy3,5x4−5y4) , p = 60x2y−20y3, .

The data f and g can be obtained from Eq. (1). For the numerical solution, we em- 155

ployed Method 1 with p = p̂ = 2 and q = 1 on a sequence of uniformly refined 156

meshes for different values of μ and σ . The analytic solution was used to compute 157

the errors listed in Table 1. As predicted by the theory, we can observe the optimal 158

quadratic convergence.

Table 1. Energy errors obtained by simulation on a sequence of uniformly refined meshes for
(σ ,μ) ∈ {(1,0),( 1

2 ,
1
2 ),(0,1)}, resembling Darcy, Brinkman, and Stokes flow.

t1.1level Darcy rate Brinkman rate Stokes rate

t1.20 4.3996 – 3.4058 – 3.8578 –
t1.31 1.1261 1.96 0.8628 1.98 0.9764 1.98
t1.42 0.2799 2.00 0.2146 2.00 0.2428 2.00
t1.53 0.0678 2.04 0.0533 2.00 0.0603 2.00

159

As a second test case, we consider a coupled Darcy-Stokes flow on a domain consist- 160

ing of two subdomains ΩD and ΩS, as depicted in Fig. 1. The flow in the subdomains 161

is governed by 162

σiui−2μi divε(ui)+∇pi = 0 and divui = 0 in Ωi,

with μD = 0 in the Darcy domain ΩD, and σS = 0 in the Stokes domain ΩS, and the 163

subproblems are coupled across the interface ∂ΩD ∩∂ΩS through 164

uS ·n=uD ·n, pS−2μ(ε(uS) ·n) ·n= pD, uS · τ + 2γ(ε(uS) ·n) · τ=0.

For γ = 0, these conditions arise naturally when considering the generalized Stokes 165

problem (1) with discontinuous coefficients. In the case γ �= 0 the third Beaver- 166

Joseph-Saffman condition, which restricts the tangential components of the normal 167

stresses, gives rise to an additional interface term that has to be included in the defi- 168

nition of the bilinear form ah; for details see [8] and the references given there. 169
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Fig. 1. From left to right: problem setup, and isolines of x- and y-components of the velocity
for parameters μS = 1, σS = 0 and μD = 0, σD=1; γ = 0. A part of the flow soaks through
the porous medium. The normal component of the velocity is (almost) continuous across the
interface, while no continuity is obtained for the tangential component
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