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1 Introduction 15

The Chimera Method developed originally in [1, 19, 20] simplifies the construction 16

of computational meshes about complex geometries. This is achieved by breaking 17

the geometries into components and generating independently a series of different 18

meshes. This enables one a great flexibility on the choice of the type of elements, 19

their orientations and local mesh refinement. The components are further coupled by 20

transmitting information from one mesh to the other to obtain a global solution. 21

The Chimera Method is a very efficient tool to treat moving objects [3, 16] as the 22

different meshes can move as rigid bodies in an independent way. Nevertheless, we 23

will focus in this work on fixed subdomains. The main application in this context is 24

optimization analysis, where different configurations can be tested without having to 25

remesh the whole geometry. In order to achieve this, we have developed a versatile 26

strategy based on the Chimera Method. 27

Usually, in the Chimera Method, the mesh is divided into a background mesh, 28

which covers all the computational domain, and patch (overset) meshes attached to 29

the different components (objects) which are located upon the background mesh. 30

First, we apply a proper preprocessing consisting in removing elements of the back- 31

ground mesh located inside the patch meshes to create apparent interfaces between 32

the background and the patches. The present algorithm requires in addition to smooth 33

the interfaces. This is achieved using a smoothing strategy of the interfaces and the 34

neighboring volume mesh. Then a new coupling algorithm is carried out in order to 35

obtain a “continuous solution” across the interfaces. In the literature, the Chimera 36

coupling has generally been implemented as an iterative algorithm (see [2] for a 37
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Schwarz coupling or [9] for a Dirichlet/Neumann coupling). Here the coupling is 38

implicit. The implementation properties of the proposed coupling facilitate its paral- 39

lel implementation and makes it a versatile method to be used on general PDE’s. 40

In the following we explain the two basic steps of the Chimera method. The 41

preprocessing step which consists in creating the interfaces between the subdomains. 42

This is a purely geometrical task. We then present the coupling step which couples 43

the solution from the different meshes. Finally we show a numerical examples. 44

2 Interface Creation Process 45

The first task of the Chimera method is to create apparent interfaces between the 46

background and the patch meshes. This is achieved by the hole cutting step of the 47

Chimera method. As will be explained in next section, our coupling strategy requires 48

smooth interfaces. After the hole cutting, smoothing of the interfaces are also neces- 49

sary. We now explain these two points. 50

2.1 Hole Cutting 51

The hole cutting tasks consists in removing elements (the hole elements) from the 52

background mesh to form interfaces with the patches. We start by identifying the hole 53

nodes. The hole nodes are those nodes of the background mesh that are located inside 54

the patch mesh. To do this we have used a skd-tree strategy, as explained in [12]. Skd- 55

trees are used to find efficiently the signed shortest distance between a point and a 56

surface. In our case, the surfaces are the patch outer boundaries. In practice we obtain 57

a better efficiency if we use the search algorithm described in [18], which is a slightly 58

modified version of the above reference. Having found the hole nodes, we identify 59

the hole elements which are the background elements of which all nodes are hole 60

nodes. The fringe nodes are defined as the nodes located on the outer boundaries 61

of the hole elements. They are the hole nodes having non-hole neighbor nodes. The 62

fringe nodes are used to form the interface of the backgound with the patches. 63

2.2 Smoothing 64

The domain decomposition coupling we propose is geometrical, as will be shown in 65

next section. It is therefore important to ensure a minimum regularity of the interfaces 66

and the mesh nearby, as this will affect the quality of the results. Figure 1 (Left) 67

shows an example of typical background interface resulting from the previous hole 68

cutting process. The proposed strategy consists in smoothing first the interface and 69

then the volume mesh in the vicinity. 70

In this article, we are interested in mesh smoothing techniques that relocate the 71

nodes to improve the mesh without changing its topology. The particular method we 72

consider here is based on local mesh smoothing algorithms, since they have shown 73

to be efficient in repairing distorted elements. The most common smoothing tech- 74

nique is Laplacian smoothing (see [13]), which moves a given node to the barycenter 75
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of all its connected nodes. This method is not computationally expensive but does 76

not guarantee an improvement in mesh quality. In addition, it can create invalid ele- 77

ments or poor quality elements resulting in convergence and shrinkage problems. To 78

overcome this shortcoming, different variations of Laplacian smoothing have been 79

proposed like [5, 22]. 80

Optimization-based smoothing algorithms are alternative local smoothing strate- 81

gies. These algorithms depend on the type of mesh, the optimization method used 82

and a measure of the mesh quality, and require an objective function to be optimized. 83

The objective function should include a good representation of the mesh quality. 84

A good summary of measures for the quality of tetrahedra and a global definition 85

of the tetrahedron shape measure is given in [4]. Besides the geometrical objective 86

functions described in the above reference, there exist other quality interpretations 87

based on matrices and matrix norms. This matrix perspective suggests several differ- 88

ent objective functions as, for example, the smoothness objective function in terms 89

of the condition number of the Jacobian matrix; see [6]. 90

Our smoothing process consists first of a surface Laplacian-smoothing algorithm 91

based on [21] for the interface. An example is shown in Fig. 1. As a consequence,

Fig. 1. (Left) Original interface after hole cutting. (Right) Smoothed interface
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92

we need to relocate the volume nodes in order to repair the bad quality elements. 93

To tackle this problem, we have applied a tetrahedra mesh improvement via opti- 94

mization of the element condition number developed in [6]. This optimization uses 95

a steepest descent method with a modified line search adapted to the geometrical 96

constraints of the sub-mesh associated to the node we want to move. The imple- 97

mented line search satisfies the Armijo rule which guarantees the local convergence 98

of the method. For more details about this issue the reader can refer to [14]. Besides, 99

a structured strategy is applied to perform the line search. The descent direction is 100

obtained using the gradient of the objective function f (x), in which the free vertex 101

(node) x is the unknown: f (x) = ‖K(x)‖2 =
[
∑M−1

m=0 κm(x)2
]1/2

, where κm represents 102

the condition number associated to the tetrahedron m, the moving node having M 103
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sub-mesh elements. We then compute the steepest descent p = −∇ f and find the 104

position which gives minimum f (x). 105

3 DD-Coupling 106

The Chimera method can be viewed as an overlapping domain decomposition tech- 107

nique, where transmission conditions are imposed on the interfaces of the subdo- 108

mains, see [17]. A key point of the Chimera method is the way the information 109

on the artificial boundaries is transferred, that is, the coupling. The different clas- 110

sical options depends on the type of the transmission conditions imposed on the 111

interfaces. The most typical are Dirichlet/Dirichlet (D/D) coupling, also known as 112

Schwarz’ method, Dirichlet/Neumann (D/N) coupling, Dirichlet/Robin (D/R) cou- 113

pling, Robin/Robin(R/R) coupling. In the litterature, the coupled system is usu- 114

ally solved iteratively. In each subdomain Ωi local problems are solved by using 115

as boundary conditions (of Dirichlet or Robin type) the values form its neighbours 116

Ω j until convergence is achieved. Relaxation is often needed to obtain this conver- 117

gence and depends on the local character of the equation. In [8], the equivalence be- 118

tween the one-domain formulation and overlapping domain decomposition methods 119

of Dirichlet/Neumann(Robin) type is shown at the continuous level. The equivalence 120

is no longer true at the discrete level. 121

We have developed in this work a new way of coupling the subdomains that we 122

refer to as Extension-Dirichlet (Ext+D). The advantage of the method is that it is im- 123

plicit and parallel. Therefore, no additional iterative loop is introduced and a-fortiori 124

the convergence of the method has no relation with the overlap. The idea consists 125

in extending the subdomains from their interfaces to their neighboring subdomains, 126

and imposing the Dirichlet condition implicitly, by connecting their extension to the 127

nodes of the neighbors. This method is equivalent, in practice, to imposing Dirichlet 128

boundary condition and eliminating it. 129

To illustrate the method, let us solve a diffusion equation, Δu = 0 using the 130

Galerking method in domain [0,1] discretized in 4 linear elements, with the bound- 131

ary conditions, u(0) = 1 and u(1) = 3. The analytical solutions is u =−2x+ 1. Fig- 132

ure 2 (Left) shows the two unconnected subdomains and the corresponding assem- 133

bled global matrix. Then, Fig. 2 (Center) shows, for the same example, the results of 134

an implicit Dirichelt/Dirichlet coupling. To achieve this, u3−u5 = 0 substitutes line 135

3 and u4−u2 = 0 subsitutes line 4. The (Ext+D)2 method we propose is illustrated 136

in Fig. 2 (Right). Starting with the matrix of Fig. 2 (Left), we perform the following: 137

• Extend node 3 shape function to node 6 of the second subdomain. This provides 138

additional terms in the equation for node 3. 139

• Extend node 4 shape function to node 1 of the second subdomain. This provides 140

additional terms in the equation for node 4. 141

We can observe that in practice the (Ext+D)2 method creates new elements. In this 142

example the new elements are 3–6 and 4–1. The element matrices and RHS’s are 143
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Fig. 2. (Left) Problem statement and domain. (Center) Dirichlet/Dirichlet assembled. (Right)
(Ext+D)2
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computed as any other elements of the mesh, but only the lines of node 3 and node 4 144

of these matrices and RHS’s are assembled into the global matrix, respectively. 145

The main difficulty of the method is to be able to construct a proper extension 146

from one interface node to the other subdomain. This task is specially complex in 147

the 3D case, mainly due to the restriction that the extension must be closed. In vari- 148

ational terms, this means that the extension has a compact support. We are going to 149

describe the way to create the extensions on the interface Γi j between subdomain Ωi 150

and subdomain Ω j in the 2D case. The process, illustrated in Fig. 3, consists in the

Fig. 3. 2D extensions
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151

following. 152

• For a fringe node of Ωi, identify the host element in Ω j. 153

• The nodes connected to this host element are the possible candidates to create 154

the triangles that form the associated extension. They are the black nodes. 155

• Construct two triangles (blue and yellow) connected to the boundaries of the 156

fringe node. 157
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• Close the result with a third one (purple). 158

The choice of the extension nodes (blue and yellow circled) is based on a quality 159

criterion of the resulting triangles [7], among all the possibilities for the previous list. 160

The third node of the triangle is the other node that forms the interface boundary. 161

4 Numerical Example 162

Figure 4 shows some results obtained for a flow around a boat. The Navier-Stokes 163

equations are solved together with a level set function and one-equation Spalart- 164

Allmaras turbulence model. The space discretization is a variational multiscale finite 165

element method. The complete description of the algorithm can be found in [10, 11, 166

15] This complex case computed with 256 CPU’s reflects the versatile property of 167

our method and its parallel capacity. The first figure shows the extension elements 168

while the second one the velocity module.

Fig. 4. (Top) Extension elements. (Bottom) Level set
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5 Conclusions 170

We have devised in this paper a domain decomposition method, referred as (Ext+D)2
171

which is based on the explicit construction of extension elements assembled almost 172
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as any other element so that the implementation is straightforward. It consists in 173

imposing implicitly Dirichlet transmission conditions and does not introduce any 174

additional iterative loop to the algorithm. Another strength of the method is that it is 175

naturally parallel. However, aspects like conservation should be treated in order to 176

complete the analysis of the method. 177
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