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1 Introduction 13

Transmission conditions between subdomains have a substantial influence on the 14

convergence of iterative domain decomposition algorithms. For Maxwell’s equa- 15

tions, transmission conditions which lead to rapidly converging algorithms have been 16

developed both for the curl-curl formulation of Maxwell’s equation, see [1–3], and 17

also for first order formulations, see [6, 7]. These methods have well found their 18

way into applications, see for example [9] and the references therein. It turns out 19

that good transmission conditions are approximations of transparent boundary con- 20

ditions. For each form of approximation chosen, one can try to find the best remain- 21

ing free parameters in the approximation by solving a min-max problem. Usually 22

allowing more free parameters leads to a substantially better solution of the min- 23

max problem, and thus to a much better algorithm. For a particular one parameter 24

family of transmission conditions analyzed in [4], we investigate in this paper a two 25

parameter counterpart. The analysis, which is substantially more complicated than 26

in the one parameter case, reveals that in one particular asymptotic regime there is 27

only negligible improvement possible using two parameters, compared to the one 28

parameter results. This analysis settles an important open question for this family 29

of transmission conditions, and also suggests a direction for systematically reducing 30

the number of parameters in other optimized transmission conditions. 31

2 Schwarz Methods for Maxwell’s Equations 32

We consider in this paper a boundary value problem associated to three time- 33

harmonic Maxwell equations with an impedance condition on the boundary of the 34
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computational domain Ω , 35

−iωεE+ curl H−σE = J, iωμH+ curl E = 0, Ω
Bn(E,H) := n× E

Z +n× (H×n) = s, ∂Ω .
(1)

with E,H being the unknown electric and magnetic fields and ε,μ ,σ being respec- 36

tively the electric permittivity, magnetic permeability and the conductivity of the 37

propagation medium and n the outward normal to ∂Ω . 38

A family of Schwarz methods for (1) with a possibly non-overlapping decomposition 39

of the domain Ω into Ω1 and Ω2, with interfaces Γ12 := ∂Ω1∩Ω2 and Γ21 := ∂Ω2∩ 40

Ω1, is given by 41

−iωεE1,n+curl H1,n−σE1,n = J in Ω1,
iωμH1,n + curl E1,n = 0 in Ω1,

(Bn1+S1Bn2)(E
1,n,H1,n) = (Bn1+S1Bn2)(E

2,n−1,H2,n−1) on Γ12,
−iωεE2,n+curl H2,n−σE2,n = J in Ω2,

iωμH2,n + curl E2,n = 0 in Ω2,
(Bn2+S2Bn1)(E

2,n,H2,n) = (Bn2+S2Bn1)(E
1,n−1,H1,n−1) on Γ21,

(2)

where S j, j = 1,2 are tangential operators. For the case of constant coefficients 42

and the domain Ω = R
2, with the Silver-Müller radiation condition limr→∞ r 43

(H×n−E)= 0 and the two subdomains Ω1 = (0,∞)×R, Ω2 =(−∞,L)×R, L≥ 0, 44

the following convergence result was obtained in [4] using Fourier analysis: 45

Theorem 1. For σ > 0, if S j , j = 1,2 have the constant Fourier symbol 46

σ j = F (S j) =− s− iω̃
s+ iω̃

, ω̃ = ω
√

εμ , s ∈C, (3)

then the optimized Schwarz method (2), has the convergence factor 47

ρ(k, ω̃ ,Z,σ ,L,s) =

∣∣∣∣∣
(√

k2− ω̃2 + iω̃σZ− s√
k2− ω̃2 + iω̃σZ + s

)
e−
√

k2−ω̃2+iω̃σZL

∣∣∣∣∣ . (4)

In order to obtain the most efficient algorithm, we choose σ j, j = 1,2 such that ρ is 48

minimal over the range of numerical frequencies k ∈ K = [kmin,kmax], e.g. kmin = 0 49

and kmax = C
h with h the mesh size and C a constant. We look for s of the form

AQ1

50

s = p+ iq, such that (p,q) is solution of the min-max problem 51

ρ∗ := min
p,q≥0

(
max
k∈K

ρ(k, ω̃ ,Z,σ ,L, p+ iq))

)
. (5)

In [4] we have solved this min-max problem for the case p = q without overlap, and 52

we have obtained the following result: 53

Theorem 2. For σ > 0 and L= 0, the solution of the min-max problem (5) with p= q 54

is for h small given by 55

p∗ =
(ωσ μ)

1
4
√

C

2
1
4
√

h
and ρ∗1 = 1− 2

3
4 (ωσ μ)

1
4
√

h√
C

+O(h). (6)
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For the overlapping case, we obtained in [8]: 56

Theorem 3. For σ > 0 and L = h, a local minimum of the min-max problem (5) with 57

p = q is for h small given by 58

p∗ =
(2ωσ μ)

1
3

2h
1
3

and ρ∗1L = 1−2
7
6 (ωσ μ)

1
6 h

1
3 +O(h

2
3 ). (7)

3 Analysis of the Two Parameter Family of Transmission 59

Conditions 60

As before, we set kmin = 0, kmax =
C
h and denote by (p∗,q∗) a local minimum of (5). 61

We first consider the non-overlapping case. 62

Theorem 4. For σ > 0 and L = 0, a local minimum (p∗,q∗) of (5) is for h small 63

given by 64

p∗ =
3

3
8 (ωσ μ)

1
4
√

C

2
3
4
√

h
, q∗ =

3
7
8 (2ωσ μ)

1
4
√

C

6
√

h
, ρ∗2 = 1− 3

3
8 (2ωσ μ)

1
4
√

h√
C

+O(h).

(8)

Proof. By solving the min-max problem (5) numerically for different parameter val- 65

ues and different mesh sizes h, we observe that the solution of (5) equioscillates once, 66

i.e. (p∗,q∗) is solution of 67

ρ(k̄, ω̃ ,σ ,Z,0, p∗+ iq∗) = ρ(kmax, ω̃ ,σ ,Z,0, p∗+ iq∗), (9)

where k̄ is an interior local maximum of ρ . We also observe the asymptotic behavior 68

k̄ ∼ C̄, p∗ ∼Cph−
1
2 , q∗ ∼Cqh−

1
2 . 69

In order to determine the constants C̄, Cp and Cq, it is necessary to have three equa- 70

tions. The first is (9), the second describes the interior local maximum of ρ in k,

AQ2

71

∂ρ
∂k

(k̄, ω̃ ,σ ,Z,0, p∗+ iq∗)) = 0, 72

and the third is the necessary condition for a local minimum of the min-max problem, 73

dρ
dq (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗) =

∂ρ
∂q (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗)+ ∂ρ

∂ p (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗) ∂ p
∂q = 0.

74

Since dρ
dq (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗) = dρ

dq (k̄, ω̃ ,σ ,Z,0, p∗+ iq∗) a similar expansion 75

together with the previous one, gives 76
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∂ p
∂q

=−
∂ρ
∂q (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗)− ∂ρ

∂q (k̄, ω̃ ,σ ,Z,0, p∗+ iq∗)
∂ρ
∂ p (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗)− ∂ρ

∂ p (k̄, ω̃ ,σ ,Z,0, p∗+ iq∗)
, 77

and thus asymptotically, the three equations lead to the system 78

(
√

A1 + C̄2− ω̃2)(ACp +BCq)−2
√

A1BCq = 0,

2Cp(C
2
p +C2

q)−C(BCp+ACq) = 0,

A(C2
q −C2

p)+ 2CpCqB = 0,

where A =
√

2
√

A1−A2, B =
√

2
√

A1 +A2, A1 = C̄4−2(C̄ω̃)2+ ω̃4+(ω̃σZ)2 and 79

A2 = 2(C̄2− ω̃2). The solution of this system is 80

C̄ =

√
ω̃
(−Zσ

√
3+ 3ω̃

)
√

3
, Cp =

3
3
8 (ω̃σZ)

1
4
√

C

2
3
4

, Cq =
3

7
8 (2ω̃σZ)

1
4
√

C
6

, 81

from which (8) follows. It remains to show that (p∗,q∗) is a local minimum, i.e. for 82

any variation (δ p,δq) and k ∈ {k̄,kmax}, we must have 83

ρ(k, ω̃ ,σ ,Z,0, p∗+ δ p+ i(q∗+ δq))≥ ρ(k, ω̃ ,σ ,Z,0, p∗+ iq∗). 84

By the Taylor formula, it suffices to prove that there is no variation (δ p,δq) such 85

that for k ∈ {k̄,kmax} 86

δ p
∂ρ
∂ p

(k, ω̃ ,σ ,Z,0, p∗+ iq∗)+ δq
∂ρ
∂q

(k, ω̃ ,σ ,Z,0, p∗+ iq∗)< 0. (10)

We prove this by contradiction, and it is necessary to obtain the next higher order 87

terms in the expansions of p∗, q∗ and k̄. After a lengthy computation, we find that 88

asymptotically 89

k̄∼ C̄+ C̃h, p∗ ∼Cph−
1
2 + C̃ph

3
2 , q∗ ∼Cqh−

1
2 + C̃qh

1
2 . 90

The computation of these new three constants allows us to obtain the partial deriva- 91

tives of ρ 92

∂ρ
∂ p (k̄)∼ 2

C h, ∂ρ
∂q (k̄)∼− 3

1
4 (2ωσ μ)

1
2

C2 h2,

∂ρ
∂ p (kmax)∼− 2

C h, ∂ρ
∂q (kmax)∼ 3

1
4 (2ωσ μ)

1
2

C2 h2.

93

Introducing these results into (10), we get δ p 2
C h−δq 3

1
4 (2ωσ μ)

1
2

C2 h2 < 0 and -δ p 2
C h+ 94

δq 3
1
4 (2ωσ μ)

1
2

C2 h2 < 0, clearly a contradiction, and thus (p∗,q∗) is a local minimum. 95

We see that for h small, both the one parameter and two parameter transmission 96

conditions can be written as ρ∗1 = 1−α1
√

h+O(h) and ρ∗2 = 1−α2
√

h+O(h). The 97

ratio α2
α1

is equal to 3
3
8 /
√

2 ≈ 1.067, which shows that the convergence factors are 98

almost equal. Hence the hypothesis p = q, used in [4] to simplify the analysis, is 99

justified. 100

We treat now the overlapping case of (5), with an overlap of one mesh size. 101
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Theorem 5. For σ > 0 and L = h, a local minimum (p∗,q∗) of (5) is for h small 102

given by 103

p∗ =
3

1
2 (ωσ μ)

1
3

2
4
3 h

1
3

, q∗ =
(ωσ μ)

1
3

2
4
3 h

1
3

, ρ∗2L = 1−2
5
6 3

3
8 (ωσ μ)

1
6 h

1
3 +O(h

2
3 ). (11)

Proof. As in the proof of Theorem 4, we first observe numerically that the solution 104

of (5) equioscillates once, i.e. (p∗,q∗) is solution of 105

ρ(k̄1, ω̃ ,σ ,Z,h, p∗+ iq∗) = ρ(k̄2, ω̃ ,σ ,Z,h, p∗+ iq∗), 106

where k̄1 and k̄2 are interior local maxima of ρ , and we obtain asymptotically for h 107

small 108

k̄1 ∼Cb1 , k̄2 ∼Cb2h−
2
3 , p∗ ∼Cph−

1
3 and q∗ ∼Cqh−

1
3 . 109

It remains to find Cb1 , Cb2 , Cp and Cq. Proceeding as before, we obtain four equations 110

from the necessary conditions of a minimum, with solution 111

Cp =
3

1
2 (2ωσ μ)

1
2

2
,Cq =

Cp√
3
,Cb1 =

√
ω̃
(−Zσ

√
3+ 3ω̃

)
√

3
,Cb2 =

√
2Cp, 112

which leads to (11). To prove that (p∗,q∗) is a local minimum, proceeding as before, 113

we obtain after a lengthy computation the higher order expansion 114

k̄1 ∼Cb1 + C̃b1h
2
3 , k̄2 ∼Cb2h−

2
3 + C̃b2 , p∗ ∼Cph−

1
3 + C̃ph

1
3 ,q∗ ∼Cqh−

1
3 + C̃qh

1
3 . 115

The computation of these four new constants allows us then to obtain the partial 116

derivatives of ρ , 117

∂ρ
∂ p (k̄1)∼ 8·2 1

6 h
2
3

3
1
4 (ωσ μ)

1
6
, ∂ρ

∂q (k̄1)∼− 2·2 5
6 (ωσ μ)

1
6 h

4
3

3
1
4

,

∂ρ
∂ p (k̄2)∼− 4·2 1

6 h
2
3

3
1
4 (ωσ μ)

1
6
, ∂ρ

∂q (k̄2)∼ 2
5
6 (ωσ μ)

1
6 h

4
3

3
1
4

.

(12)

In order to reach a contradiction, we assume again there exists, by the Taylor theo- 118

rem, a variation (δ p,δq) such that δ p ∂ρ
∂ p (k, ω̃ ,σ ,Z,h, 119

p∗+ iq∗) + δq ∂ρ
∂q (k, ω̃ ,σ ,Z,h, p∗ + iq∗) < 0, for k ∈ {k̄1,k2}. Using (12), we get 120

8 2
1
6 h

2
3

3
1
4 (ωσ μ)

1
6

δ p− 2 2
5
6 (ωσ μ)

1
6 h

4
3

3
1
4

δq < 0 and −4 2
1
6 h

2
3

3
1
4 (ωσ μ)

1
6

δ p + 2
5
6 (ωσ μ)

1
6 h

4
3

3
1
4

δq < 0, 121

clearly a contradiction, and thus (p∗,q∗) is a local minimum. 122

We also observe in this case that for h small, both convergence factors can be written 123

as ρ∗1L = 1−α1L h
1
3 +O(h

2
3 ) and ρ∗2L = 1−α2Lh

1
3 +O(h

2
3 ), and the ratio α2L

α1L
is 124

equal to 3
1
4 /2

1
3 ≈ 1.044, hence both convergence factors are almost equal. We show 125

an example of these convergence factors in Fig. 1. 126
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Fig. 1. Convergence factor comparison of algorithms with one and two parameters for ω = 2π ,
σ = 2 and μ = ε = 1, for the non-overlapping case, L = 0, on the left, and the overlapping
case, L = h = 1

100 , on the right
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4 Numerical Results 127

We present now a numerical test in order to compare the performance of both the 128

one and two parameter algorithms. We compute the propagation of a plane wave in 129

a heterogeneous medium. The domain is Ω = (−1,1)2. The relative permittivity and 130

the conductivity of the background media is ε1 = 1.0 and σ1 = 1.8, while that of 131

the square material inclusion is ε2 = 8.0 and σ2 = 7.5, see the left picture of Fig. 2. 132

The magnetic permeability μ is constant in Ω and we impose on the boundary an 133

incident field (Hinc
x ,Hinc

y ,Einc
z ). The domain Ω is decomposed into two subdomains 134

Ω1 = (−1,L)× (−1,1) and Ω2 = (0,1)× (−1,1); L is the overlapping size and is 135

equal to the mesh size. We use, in each subdomain, a discontinuous Galerkin method 136

(DG) with a uniform polynomial approximation of order one, two and three, denoted 137

by DG-P1, DG-P2 and DG-P3, see [5]. The results are shown in Fig. 3, and are in 138

good agreement with our analytical results. 139

Y

X

e1

e2

 (Einc
, H

inc)

Fig. 2. Configuration of our test problem on the left, and the numerical solution on the right
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Fig. 3. Number of iterations against the mesh size h, to attain a relative residual reduction of
10−8th
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5 Conclusion 140

We compared in this paper a one and a two parameter family of transmission 141

conditions for optimized Schwarz methods applied to Maxwell’s equations. Our 142

asymptotic analysis reveals that the addition of a second parameter does not lead 143

to a significant improvement of the algorithm, and it is therefore justified to consider 144

only the simpler case of a one parameter family of transmission conditions. These 145

results are also confirmed by our numerical experiments. 146
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